期刊文献+

快速在线分布式对偶平均优化算法 被引量:1

Fast online distributed dual average optimization algorithm
下载PDF
导出
摘要 为提高分布式在线优化算法的收敛速度,对底层网络拓扑依次添边,提出一种快速的一阶分布式在线对偶平均优化(FODD)算法。首先,对于分布式在线优化问题,运用添边方法使所选的边与网络模型快速混合,进而建立数学模型并设计FODD算法对其进行优化求解。其次,揭示了网络拓扑和在线分布式对偶平均收敛速度之间的关系,通过提高底层拓扑网络的代数连通度改进了Regret界,将在线分布式对偶平均(ODDA)算法从静态网络拓展到时变网络拓扑上,并证明了FODD算法的收敛性,同时解析地给出了收敛速度。最后的数值仿真表明:和ODDA算法相比,所提出的FODD算法具有更快的收敛速度。 To improve the convergence speed of distributed online optimization algorithms,a fast first-order Online Distributed Dual Average optimization( FODD) algorithm was proposed by sequentially adding edges to the underlying network topology. Firstly,aiming at solving the problem of the online distributed optimization to make the selected edge and network model mix quickly by using the method of edge addition,a mathematical model was established and solved by FODD.Secondly,the relationship between network topology designed and the convergence rate of the online distributed dual average algorithm was revealed,which clearly showed that,by improving the algebraic connectivity of the underlying topology network,the Regret bound could also be greatly improved. The Online Distributed Dual Average( ODDA) algorithm was extended from static networks to time-varying networks. Meanwhile,the proposed FODD algorithm was proved to be convergent and the convergence rate was specified. Finally,the results of numerical simulations show that,compared with existing algorithms such as ODDA,the proposed FODD algorithm has better convergence performance.
作者 李德权 王俊雅 马驰 周跃进 LI Dequan, WANG Junya, MA Chi, ZHOU Yuejin(School of Mathematics and Big Data, Anhui University of Science and Technology, Huainan Anhui 232000, Chin)
出处 《计算机应用》 CSCD 北大核心 2018年第8期2337-2342,共6页 journal of Computer Applications
基金 国家自然科学基金资助项目(61472003 11701007) 安徽省高校学科(专业)拔尖人才学术资助重点项目(gxbj ZD2016049) 安徽省学术和技术带头人及后备人选科研活动项目(2016H076) 安徽省自然科学基金资助项目(KJ2017A087)~~
关键词 分布式网络 在线分布式对偶平均 Regret界 代数连通度 拉普拉斯矩阵 distributed network Online Distributed Dual Averaging (ODDA) Regret bound algebraic connectivity Laplacian matrix
  • 相关文献

参考文献2

二级参考文献34

  • 1SHALEV S-S.Online learning and online convex optimization[J].Foundations and Trends in Machine Learning,2012,4(2):107-194.
  • 2WANG H,BANERJEE A.Online alternating direction method[C/OL]//Proceedings of the 2012 29th International Conference on Machine Learning.[2014-12-02].http://arxiv.org/abs/1206.6448?context=stat.ML.
  • 3SCHIZAS I,RIBEIRO A,GIANNAKIS G.Consensus in Ad Hoc WSNs with noisy links - Part I:distributed estimation of deterministic signals[J].IEEE Transactions on Signal Processing,2008,56(1):350-364.
  • 4NEDIC A,OZDAGLAR A.Distributed subgradient methods for multi-Agent optimization[J].IEEE Transactions on Automatic Control,2009,54(1):48-61.
  • 5DUCHI J,AGARWAL A,WAINWRIGHT M.Dual averaging for distributed optimization:Convergence analysis and network scaling[J].IEEE Transactions on Automatic Control,2012,57(3):592-606.
  • 6ZINKEVICH M.Online convex programming and generalized infinitesimal gradient ascent[EB/OL].[2014-12-06].http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.110.6680&rep=rep1&type=pdf.
  • 7YAN F,SUNDARAM S,VISHWANATHAN S,et al.Distributed autonomous online learning:Regrets and intrinsic privacy-preserving properties[J].IEEE Transactions on Knowledge and Data Engineering,2013,25(11):2483-2493.
  • 8HOSSEINI S,CHAPMAN A,MESBAHI M.Online distributed optimization via dual averaging[C]//Proceedings of the 2013 IEEE 52nd Annual Conference on Decision and Control.Piscataway:IEEE,2013:1484-1489.
  • 9BAZERQUE J A,MATEOS G,GIANNAKIS G B.Group-Lasso on splines for spectrum cartography[J].IEEE Transactions on Signal Processing,2011,59(10):4648-4663.
  • 10SHI W,LING Q,YUAN K,at el.On the linear convergence of the ADMM in decentralized consensus optimization[J].IEEE Transactions on Signal Processing,2014,62(7):1750-1761.

共引文献27

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部