期刊文献+

基于特征匹配和距离加权的蓝牙定位算法 被引量:8

Bluetooth location algorithm based on feature matching and distance weighting
下载PDF
导出
摘要 针对传统i Beacon指纹定位技术中接收信号强度值(RSSI)波动较大、指纹库聚类复杂、存在较大跳变性定位误差等问题,提出一种基于排序特征匹配和距离加权的蓝牙定位算法。在离线阶段,该算法先对RSSI进行加权滑动窗处理,然后根据RSSI向量大小生成排序特征码等值,并与位置坐标等信息组成指纹信息,形成指纹库;在在线定位阶段,根据排序特征向量指纹匹配定位算法和基于距离的最优加权K最邻近法(WKNN)实现室内行人定位。在定位仿真实验中,该算法可以自动根据特征码进行聚类,从而降低了聚类的复杂度,能实现最大误差在0.952 m内的室内行人定位精度。 Focusing on the issues that large fluctuation of Received Signal Strength Indication( RSSI),complex clustering of fingerprint database and large positioning error in traditional i Beacon fingerprinting,a new Bluetooth localization algorithm based on sort feature matching and distance weighting was proposed. In the off-line stage,the RSSI vector size was used to generate the sorting characteristic code. The generated code combined with the information of the position coordinates constituted the fingerprint information,to form the fingerprint library. While in the online positioning stage,the RSSI was firstly weighted by sliding window. Then,indoor pedestrian positioning was achieved by using the sort eigenvector fingerprint matching positioning algorithm and distance-based optimal Weighted K Nearest Neighbors( WKNN). In the localization simulation experiments,the feature codes were used for automatical clustering to reduce the complexity of clustering with maximum error of 0. 952 m of indoor pedestrian localization.
作者 陆明炽 王守华 李云柯 纪元法 孙希延 邓桂辉 LU Mingchi, WANG Shouhua, LI Yunke, JI Yuanfa, SUN Xiyan, DENG Guihui(Key Laboratory of Satellite Navigation and Location Awareness ( Guilin University of Electronic Technology), Guilin Guangxi 541004, China)
出处 《计算机应用》 CSCD 北大核心 2018年第8期2359-2364,共6页 journal of Computer Applications
基金 广西科技重大专项(桂科AA17202033) 桂林电子科技大学研究生教育创新计划项目(2018YJCX28)~~
关键词 iBeaon信标 聚类分析 特征匹配 距离加权 行人定位 iBeacon beacon cluster analysis feature matching distance weighting pedestrian location
  • 相关文献

参考文献4

二级参考文献22

  • 1韩屏,李方敏,吴学红.一种基于无线传感网络的实用性地下坑道定位方法[J].传感技术学报,2007,20(10):2313-2318. 被引量:8
  • 2陈维克,李文锋,首珩,袁兵.基于RSSI的无线传感器网络加权质心定位算法[J].武汉理工大学学报(交通科学与工程版),2006,30(2):265-268. 被引量:207
  • 3Capkun S, Hamdi M and Hubaux J P. GPS-Free Positioning in Mobile Ad-Hoc Networks[C]// Proceedings of the 34th Annual Hawaii International Conference on System Science. Haiwaii, USA:IEEE Computing society, 2001. 3481-3490.
  • 4Sukhyun Y, Jaehun L, Wooyong C, Euntai K. Centroid Localization Method in Wireless Sensor Networks using TSK Fuzzy Modeling[C].//Proceedings of 8th International Symposium on Advanced Intelligent Systems (ISIS2007). Sokcho- City, Korea, 2007:971-974.
  • 5Bahl P, Padmanabhan V N. RADAR: An in-Building RF- based user Location and Tracking System [C]. // Proceedings of the IEEE INFOCOM 2000. Tel Aviv: IEEE Computer and Communications Societies, 2000. 775-784.
  • 6Hightower J, Want R, Borriello G. SpotON: an Indoor 3D Location Sensing Technology based on RF Signal Strength [D]. Seattle: University of Washington, 2000.
  • 7Alippi C, Vanini G. Wireless Sensor Networks and Radio Localization: a Metrological Analysis of the MICA2 Received Sig- nal Strength Indicator [C]. // Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks (LCN'04), Italy, 2004:16-18.
  • 8Pahlavan K, Levesque A. Wireless Information Networks [M]. NewYork: John Wiley&Sons, Ine, 1995.
  • 9王开军,张军英,李丹,张新娜,郭涛.自适应仿射传播聚类[J].自动化学报,2007,33(12):1242-1246. 被引量:145
  • 10Adrian Holzera, Jan Ondrusb. Mobile Application Market: A Developer's Perspective[ J ]. Telematics and Informatics, 2014, 28(1) : 22-31.

共引文献90

同被引文献64

引证文献8

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部