期刊文献+

大数据背景下的虚拟地理认知实验方法 被引量:7

Virtual Geographic Cognition Experiment in Big Data Era
下载PDF
导出
摘要 如何构建新一代的虚拟地理认知实验研究范式,从海量人类活动和地理数据中挖掘人地交互过程中的新模式、新知识成为新一代虚拟地理认知实验需要解决的问题。本研究首先提出了在数据密集型科学研究范式下的虚拟地理认知实验框架,阐述了从环境心理学的视角,结合多源人类活动大数据、城市环境大数据构建实验平台的方法,进而支持地理知识工程的构建。其次,本文介绍了基于海量街景数据和对应的个体情感评分数据,利用深度学习的相关方法和统计模型来进行认知知识挖掘的案例。实验发现了可视域中与个体对场景的情感维度-压抑感具有较高相关性的一系列视觉要素,如植被、建筑、车辆等,并通过回归分析予以量化。 Virtual geographic cognition experiment is an experimental framework to understand the perception,cognition,emotion and behavior of human to the environment.Since it has been proposed,experimental geography and other related field has been benefited from its theory and methodology.The coming big data era has brought with a huge massive of human cognitive,emotional and behavioral data,potentially bringing opportunities to establish new research paradigm in virtual geographic experiment,to help researchers look deeper into the man-land relationship.In this paper,we first proposed the framework of virtual geographic cognition experiment based on data-intensive scientific research paradigm,where we introduced how to treat human activity data and urban context data by integrating the theory in environmental psychology,and artificial intelligence.Second,we demonstrated the framework by introducing a case study,which has explored a series of visual factor in urban scene that would have an impact on depressing emotion of individual.
作者 张帆 胡明远 林珲 ZHANG Fan;HU Mingyuan;LIN Hui(Institute of Space and Earth Information Science,Chinese University of Hong Kong,Hong Kong,China;Institute of Remote Sensing and Geographic Information System,Peking University,Beijing 100871,China;Shenzhen Research Institute,Chinese University of Hong Kong,Shenzhen 518057,China)
出处 《测绘学报》 EI CSCD 北大核心 2018年第8期1043-1050,共8页 Acta Geodaetica et Cartographica Sinica
基金 国家973计划(2015CB954103) 国家自然科学基金(41371388 41671378) 香港研究资助局优配研究金(14606715)~~
关键词 虚拟地理环境 认知实验 数据密集型研究范式 街景影像 深度学习 virtual geographic environments;cognition experiment;data-intensive scientific discovery;street-level imagery;deep learning
  • 相关文献

参考文献10

二级参考文献216

共引文献215

同被引文献163

引证文献7

二级引证文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部