期刊文献+

投入驱动的存储与计算一体化的事务处理效率优化方法 被引量:1

An investment defined transaction processing optimization approach with collaborative storage and computation adaptation
下载PDF
导出
摘要 事务处理技术是报告信息一致性和可靠性的关键技术,决定了Web服务是否可以应用于电子商务。类型化的数据、信息和知识等资源繁杂冗余,导致资源存储和处理效率低下,长事务的处理过程往往会持续较长时间,使得锁定资源的策略不能一直适用,为了协调事务型资源存储和计算代价,提出了一种投入驱动的事务处理方法。从资源建模、资源处理、处理优化和资源管理等角度进行研究,基于对现有知识图谱概念的拓展提出了一种三层可自动抽象调整的解决架构。这个架构包括:数据图谱、信息图谱和知识图谱等三个层面,关键在于对搜索目标资源对象类型转移代价和在资源存储空间上的存储代价的计算,并根据用户投入协同调整搜索目标资源对象的搜索机制和存储方案,从而降低资源搜索的时间复杂度和资源存储的空间复杂度,优化事务处理的时空效率。 Transaction processing technology is a key technology for reporting information consistency and reliability,and determines whether Web services can be applied to e-commerce.Typed resources such as data,information and knowledge are complicated and redundant,resulting in low storage and processing efficiency of resources.Processing of long transactions often lasts for a long time so that the strategy of locking resources cannot always be applied.We propose an investment defined transaction processing approach towards temporal and spatial optimization with collaborative storage and computation adaptation.In terms of resource modeling,resource processing,processing optimization and resource management,we propose a three-layer solution architecture that can be automatically abstracted and adjusted based on expanding the existing concepts of knowledge graph.The architecture includes three layers that are data graph,information graph,and knowledge graph.The key lies in the calculation of type transferring cost and storage cost on the resource storage space of search target resource objects,and the adjustment of the search mechanism and storage scheme of search target resource objects according to users' investment,thus reducing the temporal complexity of resource searching and spatial complexity of resource storage and optimizing the temporal and spatial efficiency.
作者 段玉聪 邵礼旭 曹步清 孙小兵 齐连永 DUAN Yu cong;SHAO Li xu;CAO Bu qing;SUN Xiao bing;QI Lian yong(College of Information and Technology,Hainan University,Haikou 570228;College of Computer Science and Engineering,Hunan University of Science and Technology,Xiangtan 411201;College of Information Engineering,Yangzhou University,Yangzhou 225127;College of Information Science and Engineering,Qufu Normal University,Jining 276826,China)
出处 《计算机工程与科学》 CSCD 北大核心 2018年第8期1383-1389,共7页 Computer Engineering & Science
基金 国家自然科学基金(61363007 61662021) 海南省重点研发计划(ZDYF2017128)
关键词 资源建模 知识图谱 事务处理 资源优化 resource modeling knowledge graph transaction processing resource optimization
  • 相关文献

参考文献4

二级参考文献65

  • 1车万翔,刘挺,李生.实体关系自动抽取[J].中文信息学报,2005,19(2):1-6. 被引量:116
  • 2韩明畅,李德毅,刘常昱,李华.软件中的网络化特征及其对软件质量的贡献[J].计算机工程与应用,2006,42(20):29-31. 被引量:24
  • 3董静,孙乐,冯元勇,黄瑞红.中文实体关系抽取中的特征选择研究[J].中文信息学报,2007,21(4):80-85. 被引量:55
  • 4刘克彬,李芳,刘磊,韩颖.基于核函数中文关系自动抽取系统的实现[J].计算机研究与发展,2007,44(8):1406-1411. 被引量:59
  • 5刘群 李素建.基于《知网》的词汇语义相似度计算.中文计算语言学,2002,7(2):59-76.
  • 6C Aone,M Ramos Santacruz.Rees:A large-scale relation and event extraction system[C].In:Proc of the 6th Applied Natural Language Processing Conference.New York:ACM Press,2000.76-83.
  • 7T Zhang.Regularized Winnow methods[C].In:Advances in Neural Information Processing Systems (NIPS) 13.Cambridge:MIT Press,2001.703-709.
  • 8N Cristianini,J Shawe-Taylor,H Lodhi.Latent semantic kernels[J].Journal of Intelligent Information Systems,2002,18(2-3):127-152.
  • 9B Sch(o)lkopf,A Smola,K-R Müller.Kernel principal component analysis[G].In:Advances in Kernel Methods:Support Vector Learning.Cambridge:MIT Press,1999.327-352.
  • 10D Zelenko,C Aone,A Richardella.Kernel methods for relation extraction[J].Journal of Machine Learning Research,2003,3:1083-1106.

共引文献1065

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部