期刊文献+

基于金属沸石咪唑酯骨架的含氮碳材料的催化氧还原性能 被引量:1

M-ZIF_S derived N-containing carbon material for oxygen reduction reaction
下载PDF
导出
摘要 以乙酸钴(锌)、苯并咪唑为原料,采用液相法快速地合成金属沸石咪唑酯骨架(M-ZIFs)材料,通过高温裂解,得到含氮碳材料M-N_x/C,并对其氧还原性能进行研究。通过X射线衍射(XRD),扫描电镜(SEM),透射电镜(TEM),X射线光电子能谱分析(XPS)和电化学测试等手段对合成催化剂的形貌、成分和电催化性能进行了表征。通过比较发现,具有较高的石墨化程度和Co-N_x活性位点的Co-N_x/C材料的催化氧还原性能远高于Zn-N_x/C的,具有较正的氧还原起始电位(0.92 V)和半波电位(0.83 V),接近铂碳的指标;而在稳定性方面,该材料在反应10000s后仍能保持94.2%的电流密度,远高于铂碳的80.8%。 M-Nx/C was obtained by pyrolyzing the M-ZIFs through quick liquid phase reaction of cobalt (zinc) acetate and organic ligand (Benzimidazole). Then the morphology, composition and electxocatalytic activity were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS) and electrochemical measurements. Compared with Zn-N/C, Co-N/C has higher eletrocatalytic activity for possessing high graphitization and CoNx active sites for oxygen reduction reaction (ORR). The onset potential and half wave potential of oxygen reduction on Co-N/C electrode are 0.92 V and 0.83 V, respectively, which are close to those of Pt/C. As for the stability, the Co-N/C maintains 94.2% current density after 10000 s, while the Pt/C maintains 80.8%.
作者 张莉莉 刘素琴 何震 ZHANG Li-li;LIU Su-qin;HE Zhen(School of Chemistry and Chemical Engineering,Central South University,Changsha 410083,China)
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2018年第7期1394-1400,共7页 The Chinese Journal of Nonferrous Metals
基金 湖南省科技计划项目(2016TP1007 2017TP1001)~~
关键词 含氮碳材料 氧还原 活性位点 电催化 N-containing carbon material oxygen reduction active site eletzocatalysis
  • 相关文献

参考文献3

二级参考文献27

  • 1尤世界,赵庆良,姜珺秋.电极构型对空气阴极生物燃料电池发电性能的影响[J].环境科学,2006,27(11):2159-2163. 被引量:20
  • 2J. H. Zagal, F. Bedioui, J. P. Dodelet, N4-Macrocyclic Metal Complexes, Springer, 2006, 83-147.
  • 3M. Lefèvre, E. Proietti, F. Jaouen, J. P. Dodele, Science, 2009, 324, 71-74.
  • 4A. Zitolo, V. Goellner, V. Armel, M. T. Sougrati, T. Mineva, L. Stievano, E. Fonda, F. Jaouen, Nat. Mater., 2015, 14, 937-942.
  • 5G. Wu, K. L. More, C. M. Johnston, P. Zelenay, Science, 2011, 332, 443-447.
  • 6N. R. Sahraie, U. I. Kramm, J. Steinberg, Y. J. Zhang, A. Thomas, T. Reier, J. P. Paraknowitsch, P. Strasser, Nat. Commun., 2015, 6, 8618.
  • 7Y. C. Wang, Y. J. Lai, L. Song, Z. Y. Zhou, J. G. Liu, Q. Wang, X. D. Yang, C. Chen, W. Shi, Y. P. Zheng, M. Rauf, S. G. Sun, Angew. Chem. Int. Ed., 2015, 54, 9907-9910.
  • 8U. I. Koslowski, I. Abs-Wurmbach, S. Fiechter, P. Bogdanoff, J. Phys. Chem. C, 2008, 112, 15356-15366.
  • 9J. M. Ziegelbauer, T. S. Olson, S. Pylypenko, F. Alamgir, C. Jaye, P. Atanassov, S. Mukerjee, J. Phys. Chem. C, 2008, 112, 8839-8849.
  • 10A. Garsuch, R. d'Eon, T. Dahn, O. Klepel, R. R. Garsuch, J. R. Dahn, J. Electrochem. Soc., 2008, 155, B236-B243.

共引文献33

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部