摘要
利用生成函数及特殊函数的积分,建立含有2n的Euler和与交错Euler和的关系,并系统地得到一些含有2n的Euler和的值。结果表明:权2,3的含有2n的Euler和可以用zeta值表示;权4的含有2n的Euler和可以用Li4(1/2)、ln(2)及zeta值表示;权5的两个含有2n的Euler和S4,1(1/2)、S122,1(1/2)可以分别用Li5(1/2)、Li4(1/2)、ln(2)及zeta值表示。
In this paper, generating functions and integrals of special functions are used to establish a relation between the Euler sums with 2^n and the alternating Euler sums, and some special Euler sums with power of 2 are obtained systematically. The results show that the Euler sums with 2^n of weights 2, 3 can be expressed with zeta values. The Euler sums with 2^n of weight 4 can be expressed with Li4(1/2), ln(2) and zeta values. The two Euler sums with 2^n of weight 5, S4.1 (1/2)and S1^2 2,1(1/2)can be expressed with Li5(1/2 ), Li4(1/2), In(2)and the zeta values.
作者
陈瑶
王伟平
CHEN Yao;WANG Weiping(School of Sciences,Zhejiang Sci Tech University,Hangzhou 310018,China)
出处
《浙江理工大学学报(自然科学版)》
2018年第5期619-623,共5页
Journal of Zhejiang Sci-Tech University(Natural Sciences)
基金
国家自然科学基金项目(11671360)
关键词
调和数
生成函数
Euler和
harmonic numbers
generating functions
Euler sums