摘要
基于FLAC3D建立简化的双排抗滑桩数值计算模型,考虑桩土相互作用,通过在滑坡体边界施加荷载的方法模拟作用在抗滑桩上的水平推力,系统研究抗滑桩锚固深度改变对双排抗滑桩稳定性及桩身内力的影响.研究发现,前、后排抗滑桩锚固深度的变化对双排桩桩身变形、弯矩、剪力有显著影响:锚固深度变化对前、后两排抗滑桩的桩身变形均有较大影响且前排抗滑桩锚固深度改变对桩体变形的影响大于后排桩,但适当减少前排桩锚固深度对双排抗滑桩整体稳定性影响不大;后排桩锚固深度的改变对双排抗滑桩桩身弯矩及剪力的影响大于前排桩锚固深度的改变.因此,选取合理的双排抗滑桩锚固深度能够在确保加固效果的同时减小工程投资.
A simplified numerical model of double-row anti-slide piles was established based on FLAC3 D.In this model,pile-soil interaction is considered by applying load on the boundary of sliding mass to simulate the horizontal thrust force acting on anti-slide piles.Based on this numerical model,the aim is to study the impact of the anchorage depth of the double-row anti-slide piles on the stability and their internal strength.It is found that the variation of anchoring depth of the front-row and back-row anti-slide piles has a significant impact on the deformation,bending moment and shear force of the double-row piles:The change of anchorage depth has more effect on the deformation of the front-row and back-row anti-slide piles and the influence of the anchorage depth of the front-row of anti-slide piles is lager than that of the back-row piles.But it is little effect on the stability of the double-row anti-slide piles that reduce the anchorage depth of the front-row piles.The variation of the bending moment and shear force of double-row anti-slide piles is greater than that of the former with the change of anchorage depth.Therefore,choosing a reasonable anchorage depth can reduce the project investment while ensuring the reinforcement effect.
作者
许鹏飞
董捷
仲帅
杨云
王志岗
XU Peng-fei;DONG Jie;ZHONG Shuai;YANG Yun;WANG Zhi-gang(Heibei University of Architecture,Zhangjiakou 075000,China;Hebei Key Laboratory for Diagnosis,Reconstruction and Anti disaster of Civil Engineering,Zhangjiakou 075000,China)
出处
《河北建筑工程学院学报》
CAS
2018年第2期11-15,20,共6页
Journal of Hebei Institute of Architecture and Civil Engineering
基金
河北省自然科学基金(E2017404013)
河北省教育厅重点科技开发项目(ZD2017224)
河北建筑工程学院校级研究生创新基金(XB201813)
关键词
双排抗滑桩
锚固深度
内力
稳定性
double-row anti-slide piles
anchorage depth
internal force
stability