期刊文献+

基于定位标签的时间规整方法

Time-Aligned Method based on Positioning Tag
下载PDF
导出
摘要 为了评估话音通信系统的性能,通常需要把输出语音信号进行时间规整,然后才能比较输入语音信号与输出语音信号的相似度。传统的语音信号时间规整算法适应性差,当环境噪声增大时,时间规整误差会导致系统性能急剧下降。因此,提出了一种基于定位标签的时间规整算法,大大提高了低信噪比语音信号的时间规整精度。实验仿真及工程实践表明,当信噪比为-20 d B时,提出的算法仍能达到非常高的估计精度,远远超过传统方法的时延估计精度,具有很强的抗干扰能力。 In order to evaluate the performance of a voice communication system, it is usually necessary to time warp the output speech signal before comparing the similarity of between the input speech signal and the output speech signal. The traditional speech signal time warping algorithm has poor adaptability, and when the ambient noise increases, the time-warping error can cause a sharp drop of system performance. A time-regulating algorithm based on positioning tags is proposed, thus to greatly improve the time warping precision of low SNR speech signals. Experimental simulation and engineering practice indicate that when the signal-to-noise ratio is -20 dB, the proposed algorithm could still achieve very high estimation accuracy, far exceeding the delay estimation accuracy of traditional method, and has strong anti-interference ability.
作者 钱宇红 许士敏 储飞黄 QIAN Yu-hong;XU Shi-min;CHU Fei-huang(Electronic Countermeasure Institute,National University of Defense Technology,Hefei Anhui 230037,Chin)
出处 《通信技术》 2018年第8期1815-1819,共5页 Communications Technology
关键词 时间规整 定位标签 相关性 信噪比 time alignment position-tag correlation SNR
  • 相关文献

参考文献1

二级参考文献17

  • 1Rafiei D, Mendelzon A. Efficient retrieval of similar time se- quences using DFT [C]//Proceedings of 5th International Con- ference on Foundations of Data Organizations and Algorithms. Kobe,Japan, 1998:249-257.
  • 2Berndt D J, Clifford J. Using dynamic time warping to find pat- terns in time series [C]//Proceedings of the AAAI Workshopon Knowledge Discovery in Databases. Menlo Park, CA: AAAI, 1994:359-370.
  • 3Das G, Gunopulos D, Mannila H. Finding Similar Time Series [C]//Proceedings of the Conference on Principles of Knowledge Discovery and Data Mining. Springer-Verlag, London, UK, 1997:88-100.
  • 4Loh W K, Kim S W, Whang K Y. Index interpolation: an ap- proach for subsequence matching supporting normalization transform in time-teries databases [C]//Proceedings of the 9th Intemation Conference on Information and Knowledge Manage- ment. New York: ACM Press, 2000: 314-325.
  • 5Vlachos M, Hadjieleftheriou M, Gunopulos D, etal. Indexing Multi-Dimensional Time-Series with Support for Multiple Dis- tance Measures[C]//Proceedings of 9th ACM SIGKDD Inter- national Conference on Knowledge Discovery and Data Mining. ACM, New York, NY, USA, 2003 : 216-225.
  • 6Chen L,Ng R. On the marriage of Lp-norm and edit distance[C]// Proceedings of the 30th International Conference on Very Large Data Bases. Toronto, Canada: VLDB Endowment, 2004 : 792-801.
  • 7Keogh E. Exact indexing of dynmic time warping [C]//Procee- dings of 28th International Conference on Very Large Databases Conference. Hong Kong: VLDB Endowment, 2002 : 406-417.
  • 8Kim S, Park S, Chu W. An index-based approach for similarity search supporting time warping in large sequence databases[C]// Proceedings of the 17th International Conference on Data Engi- neering. Heidelberg: IEEE Computer Society, 2001 : 607-614.
  • 9Lemire D. Faster Retrieval with a Two-Pass Dynamic-Time- Warping Lower Bound[J]. Pattern Recognition, 2009, 42 (9): 2169-2180.
  • 10Niennattrakul V, Ruengronghirunya P, Ratanamahatana C A. Exact Indexing for Massive Time Series Databases under Time Warping Distance[J]. Data Mining and Knowledge Discovery, 2009,21(3) : 509-541.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部