期刊文献+

基于DWT和形态学滤波的图像伪造检测方法 被引量:2

Image Forgery Detection Based on DWT and Morphological Filtering
下载PDF
导出
摘要 针对图像中复制-移动和拼接形式的图像伪造检测,提出一种基于离散小波变换(DWT)和形态学滤波的图像伪造检测方法;首先,将图像转换为灰度图,通过应用DWT获得LH、HL和HH子带;然后,通过阈值判断来获得伪造图像区域的边缘,并通过形态学滤波来连接边缘使其清晰化;最后,提取伪造区域的SIFT特征,并通过相似性检测来寻找图像中与伪造区域相似的区域,以此来确定伪造类型;实验结果表明,该方法能够准确检测出伪造区域和伪造类型。 For the issues that the image forgery detection in the form of copy-move and splicing,an image forgery detection method based on discrete wavelet transform(DWT)and morphological filtering is proposed.Firstly,the image is converted to grayscale and the LH,HL,and HH subbands are obtained by applying a DWT.Then,the edge of the forgery image area is obtained by the threshold judgment,and the edges are sharpened through morphological filtering.Finally,the SIFT feature of the forged region is extracted and the similar region in the image is searched through the similarity detection.Experimental results show that this method can accurately detect forgery regions and forgery types.
作者 如先姑力.阿布都热西提 亚森.艾则孜 Ruxianguli·Abudurexiti;Yasen Aizezi(Department of Information Security Engineering,Xinjiang Police College,Urumqi 830013,China)
出处 《计算机测量与控制》 2018年第8期247-251,共5页 Computer Measurement &Control
基金 国家自然科学基金资助项目(61762086) 新疆警察学院校级科研基金科技应用创新一般项目(2017JYYYCXYB13)
关键词 图像伪造检测 离散小波变换 形态学滤波 尺度不变特征变换 image forgery detection discrete wavelet transform morphological filtering scale invariant feature transform
  • 相关文献

参考文献7

二级参考文献72

  • 1D. Casasent, D. Psaltis. Position, rotation and scale invariant optical correlation[J]. Appl. Opt., 1976, 15(2): 1795-1799.
  • 2H. H. Arsennault, Y. Sheng. Properties of the circular harmonic expansion for rotation-invariant pattern recognition[J]. Appl. Opt., 1986, 25(18): 3225-3229.
  • 3Z. L. Ping, Y. L. Sheng. Fourier-mellin descriptor and interpolated feature space trajectories for three-dimensional object recognition[J]. Opt. Engng. , 2000, 39:1260-1266.
  • 4M. K. Hu. Visual pattern recognition by moment invariants[J]. IRE Trans. Inf. Theory, 1926,8(2): 179-187.
  • 5M. R. Teague. Image analysis via the general theory of moments [J]. J. Opt. Soc. Am., 1980, 70(8): 920-930.
  • 6Y. L. Sheng, L. X. Shen. Orthogonal Fourier-mellin moments for invariant pattern recognition[J]. J. Opt. Soc. Am. A, 1994, 11(6): 1748-1757.
  • 7Z. L. Ping, Rigen Wu, Y. L. Sheng. Image description with chebyshev-Fourier moments[J]. J. Opt. Soc. Am. A, 2002, 19(9) : 1748-1754.
  • 8Haiping Ren, Ziliang Ping et al.. Multidistortion-invariant image recognition with radial harmonic Fourier moments[J]. J. Opt. Soc. Am. A, 2003, 20(4): 631-637.
  • 9A. B. Bhatia, E. Wolf. On the circular polynomials of Zernike and related orthogonal sets[J]. Proc. Camb. Philos. Soc., 1954, 50(1): 40-48.
  • 10C. H. Teh, R. T. Chin. On image analysis by the methods of moments[J]. IEEE Trans. Pattern Anal. Mach. Intell., 1998, 10(4):496-513.

共引文献46

同被引文献16

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部