期刊文献+

基于主动学习和空间约束的高光谱影像分类 被引量:1

Hyperspectral Image Classification Based on Active Learning and Contextual Constraints
下载PDF
导出
摘要 高光谱影像具有数据量大、波段数多和信息冗余等问题,其分类一直是目前的一项研究热点。针对高光谱影像分类存在的问题,本文提出了一种利用主动学习和空间约束的高光谱影像分类方法。首先利用样本的先验分布状态建立样本的置信度模型,迭代选择最有"价值"的样本扩充训练样本库,以此训练最优的支持向量机分类器对高光谱影像进行分类,然后利用马尔科夫随机场(Markov Random Fields,MRF)引入空间信息,优化分类结果。文中在Indian Pines数据集上验证提出方法的有效性。实验结果表明,本文提出的方法通过样本的先验信息训练最优的SVM模型,能够有效地分类不同地物,总体分类正确率达到88%以上。 Due to the large amount of data,the number of bands and the redundancy of information,hyperspectral image classification has always been a hot topic. Aiming at the problems of hyperspectral image classification,this paper presents a hyperspectral image classification method based on active learning and contextual constraint. Firstly,using the prior distribution of the sample to establish the confidence model of the sample,iteratively selects the optimal"value"sample expansion training sample database to train the optimal SVM classifier to classify the hyperspectral images. Then,the spatial information is introduced using Markov Random Fields(MRF) to optimize the initial classification results. We validate the effectiveness and robustness of the proposed method using Indian Pines datasets. The experimental results indicate that the proposed method trains the optimal SVM classifier by the prior knowledge of samples,which can effectively classify different objects with the overall accuracy of over 88%.
作者 敖平平 孟凡纪 AO Pingping;MENG Fanji(Dongguan Geographic Information & Urban Planning Research Center,Dongguan 523129,China)
出处 《测绘与空间地理信息》 2018年第8期178-182,共5页 Geomatics & Spatial Information Technology
关键词 支持向量机 马尔科夫随机场 高光谱影像 遥感分类 主动学习 support vector machine Markov random fields hyperspectral image remote sensing classification active learning
  • 相关文献

参考文献6

二级参考文献83

  • 1李慧,王云鹏,李岩,王兴芳.基于SVM和PWC的遥感影像混合像元分解[J].测绘学报,2009,38(4):318-323. 被引量:15
  • 2杜培军,唐宏,方涛.高光谱遥感光谱相似性度量算法与若干新方法研究[J].武汉大学学报(信息科学版),2006,31(2):112-115. 被引量:21
  • 3朱锡芳,吴峰,庄燕滨.基于Mallat算法遥感图像去云雾处理的改进方法[J].遥感学报,2007,11(2):241-246. 被引量:27
  • 4童庆禧,张兵,郑兰芬,等.高光谱遥感[M].北京:高等教育出版社,2006.
  • 5YANG J M,KUO B C,YU P T, et al.. A dynamic subspace method for hyperspectral image classification [J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(7): 2840-2853.
  • 6BACHMANN C M, AINSWORTH T L. Exploiting manifold geometry in hyperspectral imagery [J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3): 441-454.
  • 7WEN J H, TIAN ZH, SHE H W, et al.. Feature extraction of hyperspectral images based on preserving neighborhood discriminant embedding [C].2010 International Conference on Image Analysis and Signal Processing (IASP). Zhejiang, 2010: 257-262.
  • 8CHEN Y C, CRAWFORD M M, GHOSH J. Applying nonlinear manifold learning to hyperspectral data for land cover classification [C].IGARSS: Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium, Washington, DC: IEEE Computer Society, 2005: 24-29.
  • 9QIAN H E, CHEN G. A new nonlinear dimensionality reduction method with application to hyperspectral image analysis [C].IGARSS: Proceeding of the 2007 IEEE International Geoscience and Remote Sensing Symposium,Washington, DC: IEEE Computer Society, 2007: 270-273.
  • 10TENENBAUM J B,SILVA V D, LANGFORD J C. A global geometric framework for nonlinear dimensionality reduction [J]. Science, 2000, 290: 2319-2323.

共引文献42

同被引文献11

引证文献1

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部