期刊文献+

一种改进的稀疏度自适应信号重构算法

Modified Sparsity Adaptive Signal Reconstruction Algorithm
下载PDF
导出
摘要 在压缩感知的实际应用中,信号的稀疏度通常未知,需要用到稀疏度自适应重构算法。针对现有方法中对步长设定较严格和迭代次数较多等缺点,提出一种改进的基于差分的稀疏度自适应重构算法。该算法在未知信号稀疏度的情况下,首先利用原子匹配测试的方法对稀疏度进行初始估计,然后利用信号测量变化的不均匀性确定信号支撑集,进而达到重构的效果。仿真结果表明,在相同稀疏度下,该算法有较好的重构效果,且比同类算法的性能更高。 Sparse degree is always impossible to obtain in the practical application of compressive sensing, so the sparsity adaptive reconstruction algorithm is necessary. In this paper, a new adaptive matching pursuit algorithm based on difference is proposed to solve the problems of existing algo- rithms that the step size is difficult to determine and the computational cost is high due to too many iterations. Firstly, the initial sparse degree with atom matching test is estimated. Then the support set of the signal is selected. Last, according to the unbalanced signal measurement, the signal can be re- constructed. Simulation results show that the proposed algorithm can reconstruct the signal well, and the pertormance is better than others in the same sparse degree.
作者 麻曰亮 江桦 裴立业 MA Yueliang, JIANG Hua, PEI Liye(Information Engineering University, Zhengzhou 450001, China)
机构地区 信息工程大学
出处 《信息工程大学学报》 2018年第1期57-61,共5页 Journal of Information Engineering University
关键词 压缩感知 稀疏度自适应 差分 重构算法 compressed sensing sparsity adaptive difference reconstruction algorithm
  • 相关文献

参考文献2

二级参考文献34

  • 1E J Candes,et al.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information [J].IEEE Trans on Information Theory,2006,5(2):489-509.
  • 2ZheTao Li,et al.Sparse signal recovery by stepwise subspace pursuit in compressed sensing [J].International Journal of Distributed Sensor Networks,2013,2013(8):798537.
  • 3ZheTao Li,et al.Compressed sensing based on best wavelet packet basis for image processing [J].Journal of Computers,2013,8(8):1947-1950.
  • 4B K Natarajan.Sparse approximate solutions to linear systems [J].SIAM Journal of Computing,1995,24(2):227-234.
  • 5D L Donoho.Compressive sensing [J].IEEE Trans on Information Theory,2006,52(4):1289-1306.
  • 6J A Tropp,A C Gilbert.Signal recovery from random measurements via orthogonal matching pursuit [J].IEEE Trans on Information Theory,2007,53(12):4655-4666.
  • 7M Elad.Optimized projections for compressed sensing [J].IEEE Trans on Signal Process,2007,55(12):5695-5702.
  • 8Jianping Xu,Yiming Pi,Zongjie Cao.Optimized projection matrix for compressive sensing [J].EURASIP Journal on Advances in Signal Processing,2010,43(2):1-8.
  • 9V Abolghasemi,S Ferdowsi,S Sanei.A gadient-based altenating minimization approach for optimization of the measurement matrix in compressive sensing [J].Signal Process,2012,92(4):999-1009.
  • 10M Sustik,J Tropp,I Dhillon,R Heath.On the existence of equiangular tight frames [J].Linear Algebra and Its Applications,2007,426(2-3):619-635.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部