摘要
Coal is the world's most abundant energy source because of its abundance and relatively low cost. Due to the scarcity in the supply of high-grade coal, it is necessary to use low-.grade coal for fulfilling energy demands of modern civilization. However, due to ItS high ash and moisture content, low-grade coal exerts the substantial impact on their consumption like pyrolysis, liquefaction, gasification and combus- tion process. The present research aimed to develop the efficient technique for the production of clean coal by optimizing the operating parameters with the help of response surface methodology. The effect of three independent variables such as hydrofluoric acid (HF) concentration (10-20% by vo!ume ),. temper- ature (60-100 ~C), and time (90-180 min), for ash reduction from the low-grade coal was Investigated.. A quadratic model was proposed to correlate the independent variables for maximum ash reduction at the optimum process condition by using central composite design (CC.D)method. The study reveals that HF concentration was the most effective parameter for ash reduction in comparison with time and temper- ature. It may be due to the higher F-statistics value for HF concentration, which effects to large extent of ash reduction. The characterization of coal was evaluated by Fourier transform infrared spectroscopy (FTIR) analysis and Field-emission scanning electron microscopy with energy-dispersive X-ray (FESEM- EDX) analysis for confirmation of the ash reduction.
Coal is the world's most abundant energy source because of its abundance and relatively low cost. Due to the scarcity in the supply of high-grade coal, it is necessary to use low-grade coal for fulfilling energy demands of modern civilization. However, due to its high ash and moisture content, low-grade coal exerts the substantial impact on their consumption like pyrolysis, liquefaction, gasification and combustion process. The present research aimed to develop the efficient technique for the production of clean coal by optimizing the operating parameters with the help of response surface methodology. The effect of three independent variables such as hydrofluoric acid(HF) concentration(10–20% by volume), temperature(60–100 °C), and time(90–180 min), for ash reduction from the low-grade coal was investigated. A quadratic model was proposed to correlate the independent variables for maximum ash reduction at the optimum process condition by using central composite design(CCD) method. The study reveals that HF concentration was the most effective parameter for ash reduction in comparison with time and temperature. It may be due to the higher F-statistics value for HF concentration, which effects to large extent of ash reduction. The characterization of coal was evaluated by Fourier transform infrared spectroscopy(FTIR) analysis and Field-emission scanning electron microscopy with energy-dispersive X-ray(FESEMEDX) analysis for confirmation of the ash reduction.