期刊文献+

基于改进BP神经网络的夜间车牌识别算法研究 被引量:9

Research on Night Vehicle License Plate Recognition Algorithm Based on Improved BP Neural Network
下载PDF
导出
摘要 为了提高夜间条件下车牌识别准确率,提出了一种基于改进BP神经网络的车牌识别算法。为了改善夜间环境下车牌图像的质量和清晰度,在图像预处理过程中采用了图像平滑处理增强技术;利用图像边缘检测技术实现了对图像正确定位,然后通过统计车牌图像白色像素个数的方法对字符分割;在此基础上,使用基于附加动量法和自适应学习速率改进的BP神经网络方法精确识别车牌。实验结果表明,该方法对夜间车牌的分割和识别是有效的。 In order to improve the accuracy of license plate recognition at night, a license plate recognition algorithm based on improved BP neural network is proposed. The image smoothing enhancement technology was used for improving the quality and clarity of the license plate images at night. The license plate was located by image edge detection technology and each single character was segmented by counting the number of white pixels in the license plate images. The additional momentum method and adaptive learning rate for improving the good classification performance of BP neural network were also discussed. Experimental results show that this method can effectively segment and identify license plates at night.
作者 张培玲 毕东生 资丽 ZHANG Pei-ling;BI Dong-sheng;ZI Li(School of Physics & Electronic Information Engineering,Henan Polytechnic University,Jiaozuo 454000,Chin)
出处 《测控技术》 CSCD 2018年第8期21-24,共4页 Measurement & Control Technology
基金 国家自然科学基金项目(61501175) 河南省教育厅科学技术研究重点项目(15A510008) 河南理工大学博士基金项目(B2015-33)
关键词 车牌识别 图像预处理 车牌定位 字符分割 BP神经网络 license plate character recognition image preprocessing license plate location character segmen-tation BP neural network
  • 相关文献

参考文献2

二级参考文献14

  • 1HUANGWei LUXiaobo LINGXiaojing.Wavelet packet based feature extraction and recognition of license plate characters[J].Chinese Science Bulletin,2005,50(2):97-100. 被引量:3
  • 2杨晓光,蔡润林,庄斌.基于车牌自动识别系统的城市道路行程时间预测算法[J].交通与计算机,2005,23(3):29-32. 被引量:12
  • 3孙棣华,董均宇,廖孝勇.基于GPS探测车的道路交通状态估计技术[J].计算机应用研究,2007,24(2):243-245. 被引量:19
  • 4KERNER B S, DEMIR C, HERRTWICH R G, et al. Traffic state detection with floating car data in road networks [ C ]//IEEE Intelligent Transportation Systems Proceedings. Vienna: Institute of Electrical and Electronics Engineers, 2005 : 700 - 705.
  • 5THAMMASAK T, SATIDCHOKE P, WASAN P A. Classification of road traffic congestion levels from GPS data using a decision tree algorithm and sliding win- dows [ C ]//Proceedings of the World Congress on Engineering. London: International Association of Engineers. 2009 : 105 - 109.
  • 6KENNEDY J, CANTRELL C R, VARNEY M D. Highway travel time analysis using license plate image capture techniques [ C ]//Proceedings of Industrial and Highway Sensors Technology. Providence: International Society for Optical Engineering, 2004:294 - 303.
  • 7TUROCHY R E, SMITH B L. Applying quality control to traffic condition monitoring [ C ]//IEEE Intelligent Transportation Systems Proceedings. Dearborn: Institute of Electrical and Electronics Engineers, 2000 : 15 - 20.
  • 8WANG Y B, PAPAGEORGIOU M, MESSMER A. Real-time freeway traffic state estimation based on extended Kalman filter: a case study[J].Transprtation Science, 2007, 41(2) :167 - 181.
  • 9KONGQJ, LIZP, CHENYK, et al. An approach to urban traffic state estimation by fusing multisource information [ J ]. IEEE Transactions on Intelligent Transportation Systems, 2009, 10 (3) : 499 - 511.
  • 10姚智胜,邵春福.道路交通状态预测研究[J].哈尔滨工业大学学报,2009,41(4):247-249. 被引量:6

共引文献38

同被引文献71

引证文献9

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部