期刊文献+

一种自适应低剂量CT图像质量改善算法 被引量:3

An Adaptive Quality Improved Algorithm in Low Dose CT Images
下载PDF
导出
摘要 针对低剂量CT(low-dose CT,LDCT)扫描会导致图像质量劣化问题,提出一种基于剪切波变换的低剂量CT图像质量改善算法.首先,利用Anscombe变换,将LDCT图像中的X射线量子噪声转化为近似服从Gaussian分布的噪声;其次,将变换后的LDCT图像转换成剪切波变换域并针对剪切波域上的低信噪比高频系数子带,利用剩余自相关功率改进噪声方差的计算精度并结合贝叶斯最大后验估计提取非噪声高频系数;最后,利用剪切波逆变换和Anscombe逆变换获得重构图像.大量的实验结果表明,该算法优于小波域的算法.其重构图像质量与基于小波域的算法相比,峰值信噪比(PSNR)平均提高52.2%,平均结构相似度(MSSIM)提高34.9%. The low-dose CT( LDCT) scanning is an effective way to reduce the X-ray radiation dose. However,quantum noise caused by the reduction of radiation dose leads to degradation of image quality. We proposed a quality improvement algorithm of low-dose CT images based on the shearlet transformation. Firstly,LDCT image was transformed using the Anscombe transform,and the quantum noise was transformed into noise which approximately obeyed Gaussian distribution. Secondly,the transformed image is decomposed into low-frequency coefficient sub-bands and multi-directional high-frequency coefficient sub-bands based on shearlet transform. Then,for high-frequency coefficient sub-bands of the low signal noise ratio,a noise variance estimation method based on the residual autocorrelation power( RAP) was proposed,which was combined with Bayesian maximum posterior probability method to obtain the more accurate non-noise high-frequency coefficients. Finally,the reconstructed image was obtained using the shearlet inverse transform and anscombe inverse transform. A series of experimental results of quantitative evaluation and visual effects showed that the proposed algorithm outperformed the de-noising method based on wavelet domain. The quality of the reconstructed image,compared with the denoising algorithm based on wavelet domain,the Peak Signal Noise Ratio( PSNR) was increased averagely by52. 2%,and the Mean Structure Similarity( MSSIM) was increased by 34. 9%.
作者 蒋慧琴 徐玉风 马岭 杨晓鹏 Toshiya Nakaguchi JIANG Huiqin1, XU Yufeng1, MA Ling1, YANG Xiaopeng2, TOSHIYA Nakaguchi3(1. School of Information Engineering, Zhengzhou University, Zhengzhou 450001, China; 2. Department of Equipment of TheFirst Affiliated, Hospital of Zhengzhou University, Zhengzhou 450052, China; 3. Center for Frontier Medical Engineering, ChibaUniversity, Chiba, Japa)
出处 《郑州大学学报(工学版)》 CAS 北大核心 2018年第4期75-80,共6页 Journal of Zhengzhou University(Engineering Science)
基金 国家自然科学基金资助项目(61271146) 河南省国际合作项目(152102410017)
关键词 低剂量CT 剪切波变换 量子噪声 贝叶斯估计 噪声方差 low dose CT shearlet transform quantum noise bayesian estimation noise variance
  • 相关文献

参考文献1

二级参考文献11

  • 1Starck J L,Candes E J, Donoho D L. The Curvelet transform for image denoising [ J]. IEEE Transactions on Image Processing, 2002, 11(6) : 670-684.
  • 2Do M N, Vetterli M. The contourlet transform: an efficient directional muhiresolution image representation [ J ]. IEEE Transactions on Image Processing, 2005, 14(12) : 2091-2106.
  • 3Guo K, Labate D. Optimally Sparse multidimensional representation using shearlets [ J ]. SIAM Journal on Mathematical Analysis, 2007, 1 (39) : 298-318.
  • 4Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms [J]. Physica D, 1992, 60(14) : 259- 268.
  • 5Durand S,Fromen J. Reconstruction of wavelet coefficients using total variation minimization [ J ]. SIAM Journal on Scientific Computing, 2003, 24(5) : 1754-1767.
  • 6Guo K,Lim W Q, Labate D. Wavelets with composite dilations and their MRA properties [ J]. Applied Computational Harmonic Analysis, 2006, 20(2) : 231-249.
  • 7Guo K, Lira W Q, Labate D. Wavelets with composite diahions [J]. Electronic Research Announcements, 2004, 1 (10) : 78- 87.
  • 8Easley G R, Labate D. Sparse directional image representations using the discrete shearlet transform [ J]. Applied Computational Harmonic Analysis, 2008, 25 ( 1 ) : 25-46.
  • 9Yi S, Labate D, Easley G R. A shearlet approach to edge analysis and detection [ J ] . IEEE Transactions on Image Processing,2009,18 ( 5 ) 929-941.
  • 10Donoho D L. De-noising by soft-thresholding [ J ]. IEEE Transactions on Information Theory, 1995, 41 (3) : 613-627.

共引文献6

同被引文献10

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部