期刊文献+

基于卷积神经网络和迁移学习的乳腺癌病理图像分类 被引量:17

BREAST CANCER HISTOLOGICAL IMAGE CLASSIFICATION BASED ON CONVOLUTIONAL NEURAL NETWORK AND TRANSFER LEARNING
下载PDF
导出
摘要 乳腺癌已经成为导致女性死亡最常见的和发病率最高的恶性肿瘤。对HE染色的乳腺癌病理图像的自动分类具有重要的临床意义。针对目前存在的深度卷积神经网络只将图像分为良性和恶性两类,同时对于高分辨率图像处理具有局限性的不足,采用了以AlexNet为架构的卷积神经网络模型将图像分为乳腺导管原位癌、乳腺浸润性导管癌、乳腺纤维腺瘤和乳腺增生四类。对于高分辨率图像,采用图像分块的思想,将每块的分类结果利用多数投票算法进行整合,整合结果作为该图像的分类结果。同时,为了避免因乳腺癌病理图像标记样本过少带来的过拟合问题,采用了迁移学习和数据增强的方法。实验结果表明,该模型识别率达到了99.74%。 Breast cancer has been the most common and morbid malignant tumor that causes female death. The autoclassification of HE-stained breast cancer histological image has a significant clinical value. In view of the existing convolutional neural networks( CNN),images are only divided into two classes,benign and malignant. At the same time,they have limitations for high-resolution image processing. This paper proposed a CNN model based on Alexnet to classify the images into four classes,ductal carcinoma in situ,invasive ductal carcinoma,breast fibroadenoma and breast hyperplasia. For high-resolution images,this paper divided them into patches. The classification results of each patch were integrated by majority voting algorithm,and the integration result was invoked as the classification result of the image. Besides,transfer learning and data augmentation were adopted in order to avoid the overfitting caused by the limitation of labeled training samples. The experimental results demonstrate that the model recognition rate reaches 99. 74%.
作者 郑群花 段慧芳 沈尧 刘娟 袁静萍 Zheng Qunhua 1,Duan Huifang 1, Shen Yao 1, Liu Juan 1, Yuan Jingping 2(1School of Computer Science, Wuhan University,Wuhan 430072, Hubei, China;2Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China)
出处 《计算机应用与软件》 北大核心 2018年第7期237-242,共6页 Computer Applications and Software
基金 国家自然科学基金项目(61272274)
关键词 乳腺癌病理图像 卷积神经网络 图像分块 多数投票算法 迁移学习 Breast cancer histological image CNN Image patch Majority voting algorithm Transfer learning
  • 相关文献

参考文献1

二级参考文献24

  • 1American Cancer Society. Cancer Facts & Figures 2015 [ R]. At- lanta: American Cancer Society, 2015:4 -6.
  • 2ROBBINS P, PINDER S, de KLERK N, et al. Histological grading of breast carcinomas: a study of interobservcr agreement [ J]. Hu- man pathology, 1995, 26(8) : 873 -879.
  • 3DALTON L W, PINDER S E, ELSTON C E, et al. Histologic grad- ing of breast cancer: linkage of patient outcome with level of pathol- ogist agreement[ J]. Modern Pathology, 2000, 13 (7) : 730 - 735.
  • 4MAY M. A better lens on disease [ J]. Scientific American, 2010, 302(5) : 74 -77.
  • 5BOURZAC K. Software: the computer will see you now [ J]. Na- ture, 2013, 502(7473) : $92 - $94.
  • 6CHEN J, Qu A, WANG L, et al. New breast cancer prognostic fac- tors identified by computer-aided image analysis of HE stained histo- pathology images [ J]. Scientific Reports, 2015(5): 10690.
  • 7PETUSHI S, GARCIA F U, HABER M M, et al. Large-scale com- putations on histology images reveal grade-differentiating parameters for breast cancer [ J]. BMC Medical Imaging, 2006, 6(1): 14.
  • 8HALL B H, IANOSI-IRIMIE M, JAVIDIAN P, et al. Computer- assisted assessment of the human epidermal growth factor receptor 2 immunohistochemical assay in imaged histologic sections using a membrane isolation algorithm and quantitative analysis of positive controls [J]. BMC Medical Imaging, 2008, 8(1): 11.
  • 9BASAVANHALLY A N, GANESAN S, AGNER S, et al. Comput- erized image-based detection and grading of lymphocytic infiltration in HER2 + breast cancer histopathology [ J]. IEEE Transactions on Biomedical Engineering, 2010, 57(3): 642-653.
  • 10Di CATALDO S, FICARRA E, ACQUAVIVA A, et al. Automa- ted segmentation of tissue images for computerized IHC analysis [ J]. Computer Methods and Programs in Biomedicine, 2010, 100 (1): 1-15.

共引文献7

同被引文献110

引证文献17

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部