期刊文献+

基于BP神经网络的纸张缺陷检测与识别研究 被引量:19

Research on paper defect detection and recognition based on BP neural network
下载PDF
导出
摘要 纸张表面缺陷会直接影响印刷产品的质量。为了快速、准确地检测出纸张缺陷,本文提出了一种基于BP神经网络的纸张缺陷检测与识别的方法。先将纸张缺陷经过形态学处理,再进行形状分析,然后把距离、面积、延长因子和圆度因子四个特征参数输入神经网络进行训练,最后利用训练后的神经网络对纸张缺陷类型进行识别。实验表明:将BP神经网络用于纸张缺陷检测中,能有效地检测缺陷类型,并准确识别常见的尘埃、孔洞、裂口和褶子四种纸张缺陷。 The surface of paper defects will directly affect the quality of printing products;to detect paper defects quickly and accurately,a method for paper defects detection and recognition based on the BP neural network is proposed.With the morphological the paper samples treated and its shape analyzed,the four characteristic parameters are input into the neural network for training,and the trained neural network is used to identify the types of paper defects.The experiment shows that the BP neural network can be used for detecting the defects of paper,and that it can effectively defect detection types and identify four kinds of paper defects accurately,such as dust,holes,cracks,and folds.
作者 段茵 陈恺煊 刘昕 张金凤 DUAN Yin;CHEN Kaixuan;LIU Xin;ZHANG Jinfeng(School of Printing,Packaging Engineering and Digital Media Technology,Xi'an University of Technology Xi'an 710048 China)
出处 《西安理工大学学报》 CAS 北大核心 2018年第2期235-239,共5页 Journal of Xi'an University of Technology
基金 陕西省重大科技创新资助项目(2008ZKC02-13)
关键词 纸张缺陷检测 图像处理 神经网络 paper defect detection image processing neural network
  • 相关文献

参考文献7

二级参考文献43

共引文献83

同被引文献204

引证文献19

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部