期刊文献+

全局分层关联网络流在多目标跟踪中的应用 被引量:1

Application of global hierarchical association network in multi-target tracking
下载PDF
导出
摘要 整体上将多目标跟踪问题转化为图的问题。首先采用经典的分层思想,建立两层跟踪框架,并将目标的运动特征和外观特征融入权值,可以较精确地模拟真实的跟踪场景。接着,加入虚拟结点以处理目标缺失的问题,并给出其加速版:聚合虚拟结点。最后利用最大二值整数规划求解无向图以同时获得一系列团。实验在公共数据集上进行,结果表明,该算法可以实现实时跟踪,且跟踪结果较好。 Translating multi-target tracking into graphs is a problem as a whole. First of all, the application of classic layered thinking is adopted, and two tracking frameworks are established, and then target movement characteristics and appearance characteristics blend into the weight, which can simulate real tracking scene more accurately. Then, the dummy node is joined to deal with missing targets problem, which gives its accelerated version:aggregated dummy nodes. Finally, the mixed-binary-integer programming is used to solve the undirected graph to obtain a series of clusters at the same time.Experimental results on common dataset show that the proposed algorithm can realize real-time tracking and the tracking result is better.
作者 王雪琴 蒋建国 齐美彬 WANG Xueqin;JIANG Jianguo;QI Meibin(School of Computer and Information,Hefei University of Technology,Hefei 230009,China;Engineering Research Center of Safety Critical Industrial Measurement and Control Technology,Ministry of Education,Hefei 230009,China)
出处 《计算机工程与应用》 CSCD 北大核心 2018年第14期180-185,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61371155) 安徽省科技攻关项目(No.1301b042023)
关键词 多目标跟踪 聚合虚拟结点 最大二值整数规划 multi-target tracking graphs aggregated dummy nodes mixed-binary-integer programming
  • 相关文献

参考文献2

二级参考文献23

  • 1李洪兴 汪群.工程模糊数学方法及应用[M].天津:天津科学技术出版社,1991.72-75.
  • 2J Llinas, E Waltz. Multisensor Data Fusion[M]. Norwood, Massachusetts: Artech House, 1990.115-142.
  • 3D J Torrieri. Statistical theory of passive location systems[J]. IEEE Trans on AES, 1984,20:183-198.
  • 4L G Taff. Target localization from bearings-only observations[J].IEEE Trans On AES, 1997,33:2-10.
  • 5Hu W M,Tan T N,Wang L,Maybank S. A survey on visual surveillance of object motion and behaviors[J].IEEE Transactions on Systems Man and Cybernetics-Part C:Applications and Reviews,2004,(03):334-352.doi:10.1109/TSMCC.2004.829274.
  • 6Yilmaz A,Javed O,Shah M. Object tracking:a survey[J].ACM Computing Surveys,2006,(04):1-45.doi:10.1145/1177352.1177355.
  • 7Zhao T,Nevatia R. Tracking multiple humans in crowded environment[A].Washington D.C.,USA:IEEE,2004.406-413.
  • 8Hue C,Le Cadre J P,Perez P. Sequential Monte Carlo methods for multiple target tracking and data fusion[J].IEEE Transactions on Signal Processing,2002,(02):309-325.
  • 9Comaniciu D,Ramesh V,Meer P. Kernel-based object tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,(05):564-577.doi:10.1109/TPAMI.2003.1195991.
  • 10Jiang M X,Li M,Wang H Y. A robust combined algorithim of object tracking based on moving object detection[A].Dalian,China:IEEE,2010.619-622.

共引文献54

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部