摘要
考虑具有非单调反应功能函数食饵捕食系统的动力学行为,利用线性化的思想以及Hopf分支定理分析常微分系统以及反应扩散系统在正常数平衡解(u1,v1)处经历的Hopf分支的分支方向与分支周期解的稳定性,通过对比给出空间扩散对系统稳定性的影响.
Considering the dynamic behavior of a prey-predator system with non-monotonic response function,directions of Hopfbifurcations and stabilities of periodic solutions that the ordinary differential system and reaction-diffusion system experience at the positive constant steady state(u1,v1),are analyzed mainly by the idea of linearization and Hopf bifurcation theorem.The effect of spatial diffusion on the stability of the system is given by contrast.
作者
王欢
WANG Huan(Department of Mathematics,Lanzhou Jiaotong University,Lanzhou 730070,China)
出处
《兰州文理学院学报(自然科学版)》
2018年第4期7-13,31,共8页
Journal of Lanzhou University of Arts and Science(Natural Sciences)
关键词
食饵捕食系统
平衡解
超临界Hopf分支
次临界Hopf分支
稳定性
predator prey system
steady state solution
supercritical Hopf bifurcation
sub critical Hopf bifurcation
stability