期刊文献+

面向自然环境的车牌检测算法设计 被引量:1

Design of License Plate Detection Algorithm for Natural Environment
下载PDF
导出
摘要 作为现代化智能领域中的主要技术,车牌的自动识别理论中主要包括了两个不同的部分,分别是车牌的检测与字符的识别.根据车牌检测算法的发展现状,文中出于对车牌检测速度与精度的综合考虑,采用了一种基于学习、由粗检测到精检测的车牌检测技术与方法.该方法在利用车牌的颜色信息与边缘信息对车牌候选区域进行快速检测的基础上,通过数字车牌图像中的梯度方向直方图与支持向量机来实现对真实场景中车牌候选区域的高效筛选.该方法能够对多幅不同光照条件、不同拍摄角度、不同拍摄时间所获取图像进行检测,实验结果表明该算法具有精度高、鲁棒性好的特点,可以满足自然条件下对车牌进行检测的应用需求. As the main technology in the field of modern intelligent efficiency,the theory of auto recognition of license plate mainly includes two different parts,which are the detection of license plate and the recognition of characters.According to the development status of the license plate detection algorithm and out of the comprehensive consideration of the speed and precision of the license plate detection,a kind of license plate detection technology and method based on learning,from rough detection to fine detection are adopted in this paper.On the basis of using the color information and the edge information of the license plate for the fast detection of the candidate region of the license plate,the gradient direction histogram and SVM in the digital license plate image are used to efficiently screen the candidate regions in real scene.The method can detect the images obtained with different illumination conditions,different shooting angles and different shooting time.The experimental results show that the algorithm has high accuracy and good robustness and can meet the application requirements for the detection of the license plate in natural conditions.
作者 赵田 安婧 韩彩霞 贾学科 ZHAO Tian;AN Jing;HAN Cai-xia;JIA Xue-ke(School of Media Engineering,Lanzhou University of Arts and Science,Lanzhou 730000,China)
出处 《兰州文理学院学报(自然科学版)》 2018年第4期60-63,82,共5页 Journal of Lanzhou University of Arts and Science(Natural Sciences)
关键词 自然场景 车牌检测 颜色边缘 自动识别 natural scene license plate detection color edge automatic recognition
  • 相关文献

参考文献6

二级参考文献45

  • 1陈来荣,冀荣华,徐宇.基于支持向量机的车牌字符识别[J].公路交通科技,2006,23(5):126-129. 被引量:6
  • 2BURGES C J C.A Tutorial on Support Vector Machines for Pattern Recognition[J].Data Mining and Knowledge Discovery, 1998,2(2):121-167.
  • 3L.Winger.J.A.Robinson,M.E.Jernigan,Low-complexity character extraction in low-contrast scene images"[J].IEEE Transaetions on Paitem Recognition and Artificial Intelligence,2000,14(2):113-135.
  • 4V.Vapnik,"Estimation of dependences based on empirical data"[M],Berlin:Springer-Verlag,1982:110-162.
  • 5Bao-Qing Li,Baoxin Li.Building Pattern Classifiers Using Convolutional Neural Networks[M].Neural Networks,vol.5,no.3.3081-308.
  • 6Hegt H. A.,Haye R. J.,Khan N. A.. A high performance license plate recognition system. In: Proceedings of IEEE International Conference on Systems,Man,and Cybernetics,San Diego,1998,5: 4357~4362
  • 7Tyan J. K.,Neubauer C.,Goganovic L.. A character segmentation algorithm for recognition of vehicle license plate. In: Proceedings of Part of the SPIE Conference on Mobile Robots XIV,Boston,1999,3838: 12~21
  • 8Yu M.,Kim Y. D.. An approach to Korean license plate recognition based on vertical edge matching. In: Proceedings of IEEE International Conference on Systems,Man,and Cybernetics,Nashville,2000, 4:2975~2980
  • 9Lee E. R.,Kim P. K.,Kim H. J.. Automatic recognition of a car license plate using color image processing. In: Proceedings of IEEE International Conference on Image Processing,Austin,Texas,1994,2:301~305
  • 10黄凡,李志敏,张晶,万睿,张凤阳.SVM在车牌字符识别中的应用[J].电工技术,2007(10):56-58. 被引量:1

共引文献135

同被引文献10

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部