摘要
给定矩阵P∈C^(n×n)且P^(*)=-P=P^(k+1).考虑了矩阵方程AX=B存在斜Hermite{P,k+1}(斜)Hamilton解的充要条件,并给出了解的表达式.进一步,对于任意给定的矩阵∈C^(n×n),给出了使得Frobenius范数‖Ã-A‖取得最小值的最佳逼近解Ã∈C^(n×n).当矩阵方程AX=B不相容时,给出了斜Hermite{P,k+1}(斜)Hamilton最小二乘解,在此条件下,给出了对于任意给定矩阵的最佳逼近解.最后给出一些数值实例.
GivenP∈C^(n×n) and P=-P=P^(k+1),we consider the necessary and sufficient conditions such that the matrix equation AX=B is consistent with the skew-Hermitian{P,k+1}(skew-)Hamiltonian structural constraint.Then,the corresponding expressions of the constraint solutions are also obtained.For any given matrixÃ∈C^(n×n),we present the optimal approximate solutionÃ∈C^(n×n) such that‖-‖is minimized in the Frobenius norm sense.If the matrix equation AX=B is not consistent,its least-squares skew-Hermitian{P,k+1}(skew-)Hamiltonian solutions are given.Under the least-square sense,we consider the best approximate solutions to any given matrix.Finally,some illustrative experiments are also presented.
作者
雍进军
陈果良
徐伟孺
YONG Jin-jun;CHEN Guo-liang;XU Wei-ru(Department of Mathematics and Computer Science,Guizhou Education University,Guiyang 550018,China;School of Mathematical Sciemces,East China Normal University,Shanghai 200241,China)
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2018年第4期32-46,58,共16页
Journal of East China Normal University(Natural Science)
基金
国家自然科学基金(11471122)
2016年度贵州省科技平台及人才团队专项基金项目(黔科合平台人才【2016】5609)
贵州师范学院校级课题(2015BS009)