期刊文献+

3D局部特征耦合回归森林的图像动作识别算法

Motion recognition algorithm based on 3D local feature coupling regression forest
下载PDF
导出
摘要 为提高人体动作的识别与理解能力,设计3D局部特征耦合回归森林学习的动作识别方案。利用Gaussian滤波器从深度图像中提取人体轮廓的空间点,将获得的轮廓点映射到3D直方图中,形成3D局部特征;根据3D局部特征,利用关节点与边缘形成人体的图形模型,获取其结构约束Φ(x_i)和空间约束Φ(x_(ij));引入回归森林(regression forests,RF)定义Φ(x_i)、Φ(x_(ij))的回归系数,利用Gaussian密度函数计算Φ(xi)、Φ(x_(ij))的相互分布关系,对其进行分类学习,完成人体动作识别与理解。实验结果表明,与当前方法相比,所提方法具有更高的动作识别准确率,可有效学习人体结构和定位关节。 To improve the recognition and understanding of human action,an action recognition scheme for 3D local feature coupling regression forest learning was presented.The spatial point of human contour was extracted from depth image using Gaussian filter.The obtained contour points were mapped to the 3D histogram to form the 3D local feature.According to the extracted 3 Dlocal features,agraphical model of human body was formed by joint and edge,the structural constraints Φ(xi) and spatial constraints Φ(x(ij))were obtained.The regression coefficient(regression forests,RF)was introduced intoΦ(xi),Φ(x(ij))to calculate the regression coefficient,and Gaussian density function was used to calculate theΦ(xi),Φ(x(ij))distribution of each other for learning to complete human action recognition and understanding.Experimental results show the proposed method significantly improves the accuracy of motion recognition for depth images to effectively study the human body structure and positioning joints compared with the current methods.
作者 占俊 谢全卿 ZHAN Jun 1,XIE Quan-qing 2(1.Department of Computer,Jingdezhen College,Jingdezhen 333000,China;2.School of Electronic InformationEngineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,Chin)
出处 《计算机工程与设计》 北大核心 2018年第7期1990-1995,2007,共7页 Computer Engineering and Design
基金 国家自然科学基金项目(60872065) 江苏省自然科学基金项目(BK20160217) 江西省教育厅科学技术研究基金项目(GJJ16276)
关键词 图像动作识别 3D局部特征 图形模型 回归森林 特征直方图 Gaussian密度函数 image motion recognition 3D local feature graphical model regression forest feature histogram Gaussian density function
  • 相关文献

参考文献8

二级参考文献113

  • 1刘懿,王敏.基于时空域3D-SIFT算子的动作识别[J].华中科技大学学报(自然科学版),2011,39(S2):134-136. 被引量:3
  • 2杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 3Murphy-Chulorian E,Trivedi M M.Head pose estimation in computer vision:a survey[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(4):607-626.
  • 4Ferrario V F,Sforza C,Serrao G,et al.Active range of motion of the head and cervical spine:a three-dimensional investigation in healthy young adults [J].Journal of Orthopaedic Research,2002,20(1):122-129.
  • 5Girshick R,Shotton J,Kohli P,et al.Efficient regression of general activity human poses from depth images [C]//Proceedings of International Conference on Computer Vision.Washington D C:IEEE Computer Society Press,2011:415-422.
  • 6Shotton J,Sharp T,Kipman A,etal.Real time human pose recognition in parts from single depth images [J].Communications of the ACM,2013,56(1):116-124.
  • 7Breiman L.Random forests [J].Machine Learning,2001,45(1):5-32.
  • 8Gall J,Lempitsky V.Class specific Hough forests for object detection [M]//Decision Forests for Computer Vision and Medical Image Analysis.London.Springer Press,2013:143-157.
  • 9Criminisi A,Shotton J,Robertson D,et al.Regression forests for efficient anatomy detection and localization in CT studies [C]//Proceedings of International MICCAI Conference on Medical Computer Vision:Recognition Techniques and Applications in Medical Imaging.Heidelberg:Springer,2011:106-117.
  • 10Huang C,Ding X Q,Fang C.Head pose estimation based on random forests for muhielass classification [C]//Proceedings of the 20th International Conference on Pattern Recognition.Washington D C:IEEE Computer Society Press,2010:934-937.

共引文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部