期刊文献+

基于分数阶和非局部全变差模型的图像去模糊 被引量:5

Fractional-order and non-local total variation based image deblurring
下载PDF
导出
摘要 为减少阶梯效应,同时更好地利用图像本身的信息,提出一种结合分数阶全变差(FOTV)和非局部全变差(NLTV)模型的非盲去模糊图像重建方法。分别用FOTV和NLTV约束由全局梯度提取法(GGES)分解而成的平滑区和纹理区,建立图像非盲去模糊的正则化模型,分别采用交替方向乘子法(ADMM)和分裂Bregman操作符(BOS)算法求解两个子问题。充分的实验结果表明,该模型减少了平滑区的阶梯效应,更好地恢复了图像的纹理细节,验证了该模型的可行性和算法的有效性。 To reduce the staircase artifacts and use more information of the blurred image itself,an image reconstruction method of non-blind deblurring by combining the fractional order total variation(FOTV)and the non-local total variation(NLTV)models was proposed.The FOTV and NLTV regularization were used to constrain the flat and texture regions decomposed through global gradient extraction scheme(GGES),respectively,and a regularization optimization model of non-blind deblurring was constructed.Alternating direction method of multipliers(ADMM)was used to solve the FOTV sub-problems,while the algorithm of Bregman operator splitting(BOS)was used to solve NLTV sub-problems.Lots of experimental results and data demonstrate that the proposed method contains the advantages of FOTV and NLTV,it can not only reduce the staircase artifacts in flat regions,but also reconstruct more texture details of the blurred images.The feasibility and efficiency of the proposed method and corresponding algorithm are verified.
作者 向雨晴 杨晓梅 XIANG Yu-qing,YANG Xiao-mei(School of Electrical Engineering and Information,Sichuan University,Chengdu 610065,Chin)
出处 《计算机工程与设计》 北大核心 2018年第7期2002-2007,共6页 Computer Engineering and Design
关键词 非盲去模糊 分数阶全变差 非局部全变差 交替方向乘子法 正则化 non-blind deblurring fractional-order total variation non-local total variation alternating direction method of multipliers regularization
  • 相关文献

参考文献1

二级参考文献20

  • 1Tschumperle D,Deriche R.Vector-valued image regulariza-tion with PDEs:a common framework for different applica-tions[J].IEEE Transactions on Pattern Analysis and Ma-chine Intelligence,2005,27(4):506-517.
  • 2Gilboa G,Sochen N,Zeevi Y Y.Variational denoising ofpartly textured images by spatially varying constraints[J].IEEE Transactions on Image Processing,2006,15(8):2281-2289.
  • 3Perona P,Malik J.Scale-space and edge detection using ani-sotropic diffusion[J].IEEE Trans Pattern Anal Machine In-tell,1990,12(7):629-639.
  • 4Ruding L,Osher S,Fatemi E.Nonlinear total variation basednoise removal algorithms[J].Physical D,1992,60(1/4):259-268.
  • 5Osher S,Rudin L I,Fatemi E.Nonlinear total variation basednoise removal algorithms[J].Physica D:Nonlinear Phenom-ena,1992,60(3):259-268.
  • 6Kass M,Witkin A,Terzopoulos D.Snakes:active contourmodels[J].International Journal of Computer Vision,1988,1(4):321-331.
  • 7Pu Yifei,Zhou Jiliu,Yuan Xiao.Fractional differentialmask:a fractional differential-based approach for multiscaletexture enhancement[J].IEEE Transactions on Image Pro-cessing,2010,19(2):491-511.
  • 8Bai Jian,Feng Xiangchu.Fractional order anisotropic diffu-sion for image denoising[J].IEEE Transactions on ImageProcessing,2007(16):2492-2502.
  • 9Zhang Jun,Wei Zhihui.A class of fractional-order multi-scale variational models and alternating projection algorithmfor image denoising[J].Applied Mathematical Modelling,2011,35(5):2516-2528.
  • 10朱立新,王平安,夏德深.引入耦合梯度保真项的非线性扩散图像去噪方法[J].计算机研究与发展,2007,44(8):1390-1398. 被引量:13

共引文献12

同被引文献44

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部