期刊文献+

基于改进长效递归卷积网络的行为识别算法 被引量:3

Action recognition based on improved long-term recurrent convolution network
下载PDF
导出
摘要 为充分提取视频序列中人体行为的静态特征与时域特征,提高人体行为识别算法的准确率,结合深度卷积神经网络与递归神经网络,提出一种端到端的网络模型,分别使用多帧叠加的RGB图像与光流图像作为网络输入,将基于RGB图像的人体行为特征与基于光流图像的人体行为特征进行加权融合,作为最终的人体行为特征。实验结果表明,该算法可以有效提高行为识别准确率,在公开数据集UCF101上取得了84.68%的平均准确率,高于改进前长效递归卷积神经网络(82.34%)。 To fully extract the spatial feature and time domain feature of human activity in video sequences and improve the accuracy of human action recognition algorithm,an end-to-end network combining with deep convolution neural network and recurrent neural network was presented.The stacked RGB images and the stacked optical flow images were respectively used as the network input,and the features based on the RGB images and the features based on the optical flow images were weightedly integrated as the ultimate human activity features.Experimental results show that the proposed algorithm can effectively improve the accuracy of action recognition,and obtain the average accuracy rate of 84.68%in the open dataset UCF101,which is higher than that of the long recurrent convolution network(82.34%).
作者 王学微 徐方 贾凯 WANG Xue-wei 1,2 ,XU Fang 1,3 ,JIA Kai 1,3(1. State Key Laboratory of Robotics,Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 110016,China;2.University of Chinese Academy of Sciences,Beijing 100049,China;3.Central Research Institute,Shenyang SIASUN Robot and Automation Limited Corporation,Shenyang 110168,Chin)
出处 《计算机工程与设计》 北大核心 2018年第7期2054-2058,共5页 Computer Engineering and Design
基金 国家科技支撑计划基金项目(2015BAF13B01)
关键词 行为识别 卷积神经网络 递归神经网络 深度学习 模式识别 action recognition convolutional neural network recurrent neural network deep learning pattern recognition
  • 相关文献

同被引文献7

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部