期刊文献+

具梯度耗散与非局部源牛顿渗流方程解的爆破性质 被引量:1

Blow-up Properties of Solutions to Newtonian Filtration Equation with Dissipative Gradient and Nonlocal Source
下载PDF
导出
摘要 利用能量估计方法考虑一类具有梯度耗散项和非局部源项的牛顿渗流方程的初边值问题解的爆破现象,给出解是否发生爆破的条件,并借助适当的辅助函数和Sobolev不等式对解发生爆破的时间上下界进行估计. We considered blow-up phenomena of solutions to the initial boundary value problem for a class of Newtonian filtration equations with dissipative gradient and nonlocal source terms by energy estimation method.We gave the condition whether the blow-up of solution occurred or not.Then by using the suitable auxiliary function and Sobolev inequalities,we estimated the upper and lower bounds of blow-up time of solutions.
作者 何冰 凌征球 HE Bing;LING Zhengqiu(College of Mathematics,Jilin University,Changchun,130021,China;School of Mathematics and Statistics,Yulin Normal University,Yulin 537000,Guangxi Zhuang Autonomous Region,China)
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2018年第4期763-768,共6页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11461076)
关键词 牛顿渗流方程 梯度耗散 非局部源 爆破 Newtonian filtration equation dissipative gradient nonlocal source blow-up
  • 相关文献

参考文献2

二级参考文献12

  • 1穆春来,胡学刚,李玉环,崔泽键.BLOW-UP AND GLOBAL EXISTENCE FOR A COUPLED SYSTEM OF DEGENERATE PARABOLIC EQUATIONS IN A BOUNDED DOMAIN[J].Acta Mathematica Scientia,2007,27(1):92-106. 被引量:7
  • 2Wu Z Q, Zhao J N, Yin J X, Li H L. Nonlinear Diffusion Equations. River Edge, N J: World Scientific Publishing, 2001.
  • 3Chipot M, Weissler F B. Some blow-up results for a nonlinear parabolic problem with a gradient term. SIAM J Math Anal, 1989, 20:886-907.
  • 4Souplet P. Finite time blowup for a nonlinear parabolic equation with a gradient term and applications. Math Methods Appl Sci, 1996, 19:1317-1333.
  • 5Layne L E, Schaefer P W. Lower bounds for blow-up time in parabolic problems under Dirichlet conditions. J Math Anal Appl, 2007, 328:1196-1205.
  • 6Payne L E, Philippin G A, Schaefer P W. Bounds for blow-up time in nonlinear parabolic problems. J Math Anal Appl, 2008, 338:438-447.
  • 7Payne L E, Philippin G A, Schaefer P W. Blow-up phenomena for some nonlinear parabolic problems. Nonlinear Anal, 2008, 69:3495-3502.
  • 8Lv X S, Song X F. Bounds of blowup time in parabolic equations with weighted source under nonhomo- geneous Neumann boundary condition. Math Math Appl Sci, 2014, 37:1019-1028.
  • 9Song X F, Lv X S. Bounds of blowup time and blowup rate estimates for a type of parabolic equations with weighted source. Appl Math Computation, 2014, 236:78-92.
  • 10Tang G S, Li Y F, Yang X. Lower bounds for the blow-up time of the nonlinear non-local reaction diffusion problems in RN (N ≥ 3). Boundary Value Problems, 2014, 2014:265.

共引文献19

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部