期刊文献+

基于IBPSO的非侵入式多负荷投切行为辨识方法 被引量:6

A non-intrusive multi-load switching behavior identification method based on IBPSO
下载PDF
导出
摘要 对多负荷投切行为的有效辨识,为了解用户用电行为,实现智能用电提供了有力支撑。首先,为解决多种负荷投切行为的辨识问题,提出改进的二进制粒子群优化算法(Improved Binary Particle Swarm Optimization,IBPSO),并在IBPSO的适应度函数中引入距离测度法。其次,针对单一负荷特征辨识精度并不理想的问题,融合电流谐波和有功功率作为负荷投切行为的特征。仿真结果表明,所提算法对多负荷投切行为的辨识在收敛速度和精度上都有所提高。 The effective identification of multi-load switching behavior provides a powerful support for understanding the electricity behavior of users and achieving smart power consumption. Firstly,an improved binary particle swarm optimization( IBPSO) algorithm is proposed in order to solve the identification problem of simultaneous switching of multiple loads. And the distance measurement method is introduced as the fitness function of the IBPSO algorithm. Then,for the problem that the identification accuracy of a single load is not ideal,the current harmonic and active power are fused as the characteristics of load switching behavior. Simulation results show that the proposed algorithm improves the convergence speed and accuracy of the identification of multi-load switching behavior.
作者 刘兴杰 许月娟 Liu Xingjie;Xu Yuejuan{North China Electric Power University(Baoding),Baoding 071003,Hebei,China)
出处 《电测与仪表》 北大核心 2018年第13期40-45,共6页 Electrical Measurement & Instrumentation
基金 河北省自然科学基金项目(E2015502066) 中央高校基本科研业务费(2015MS86)
关键词 负荷辨识 改进二进制粒子群优化(IBPSO) 距离测度法 适应度函数 load identification improved binary particle swarm optimization(IBPSO) distance measurement method fit-ness function
  • 相关文献

参考文献11

二级参考文献146

共引文献478

同被引文献77

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部