期刊文献+

基于融合相位特征的视网膜血管分割算法 被引量:6

Retinal vessel segmentation algorithm based on hybrid phase feature
下载PDF
导出
摘要 针对相位一致性特征对血管中心检测不足问题,提出基于融合相位特征的眼底视网膜血管分割算法。首先,预处理原始的视网膜图像;然后,对图像中每个像素构造4D的特征向量(包括Hessian矩阵、Gabor变换、条带选择组合位移滤波响应(B-COSFIRE)滤波、相位特征);最后,采用支持向量机(SVM)进行像素分类,实现眼底视网膜血管的分割。其中,相位特征是将分别提取的相位一致性特征与Hessian矩阵特征进行小波融合后得到的一种新的融合相位特征。该特征既保留了相位一致性特征良好的血管边缘信息,又克服了相位一致性特征对血管中心检测的不足。在用于血管提取的数字视网膜图像(DRIVE)数据库上测得基于融合相位特征的视网膜血管分割算法的平均准确率(Acc)为0.957 4,平均受试者工作曲线面积(AUC)为0.970 2;且在单一特征进行像素分类提取血管的实验中,与使用相位一致性特征相比,使用融合相位特征进行像素分类提取血管的Acc由0.9191提高到0.9478,AUC由0.935 9提高到0.957 8。实验结果表明,融合相位特征比相位一致性特征更适用于基于像素分类的眼底视网膜血管分割算法。 Focusing on the issue that the phase consistency feature is deficient in detection of vascular center, a new retinal vessel segmentation algorithm based on hybrid phase feature was proposed. Firstly, an original retinal image was preprocessed. Secondly, every pixel was represented by a 4-D vector composed of Hessian matrix, Gabor transformation, Bar-selective Combination Of Shifted FIlter REsponses (B-COSFIRE) and phase feature. Finally, Support Vector Machine (SVM) was used for pixel classification to realize the segmentation of retinal vessels. Among the four features, phase feature was a new hybrid phase feature formed by phase consistency feature and Hessian matrix feature through wavelet fusion. This new phase feature not only preserves good vascular edge information by phase consistency feature, but also compensates for the deficient detection of vascular center by phase consistency feature. The average Accuracy (Acc) of the proposed algorithm evaluated on the Digital Retinal Images for Vessel Extraction (DRIVE) database is 0.9574, and the average Area Under receiver operating characteristic Curve (AUC) is 0.9702. In the experiment of using single feature for vessel extraction through pixel classification, compared with using phase consistency feature, using hybrid phase feature for vessel extraction improves the average Accuracy (Acc) from 0.9191 to 0.9478, the AUC from 0.9359 to 0.9702. The experimental results show that hybrid phase feature is more suitable for retinal vessel segmentation based on pixel classification than phase consistency feature.
作者 李媛媛 蔡轶珩 高旭蓉 LI Yuanyuan;CAI Yiheng;GAO Xurong(College of Information Science,Beijing University of Technology,Beijing 100124,China)
出处 《计算机应用》 CSCD 北大核心 2018年第7期2083-2088,共6页 journal of Computer Applications
关键词 视网膜 血管分割 特征提取 支持向量机 小波图像融合 retinal vessel segmentation feature extraction Support Vector Machine (SVM) wavelet image fusion
  • 相关文献

参考文献7

二级参考文献63

  • 1姚畅,陈后金.一种新的视网膜血管网络自动分割方法[J].光电子.激光,2009,20(2):274-278. 被引量:17
  • 2郑素珍,陈文静,苏显渝.基于复Morlet小波的相位分析[J].光电工程,2007,34(4):73-76. 被引量:7
  • 3Ravishankar S, Jain A, Mittal A. Automated feature extrac- tion for early detection of diabetic retinopathy in fundus images [C] //IEEE Conference on Computer Vision and Pattern Re- cognition. CVPR. IEEE, 2009: 210-217.
  • 4Deng K, Tian J, Zheng J, et al. Retinal fundus image regis- tration via vascular structure graph matching [J]. Journal of Biomedical Imaging, 2010: 14.
  • 5Abdel Razik Youssif AH, Ghalwash A Z. Optic disc detection from normalized digital fundus images by means of a vessels' di- rection matched filter [J]. IEEE Transactions on Medical Ima- ging, 2008, 27 (1).. 11-18.
  • 6Zhang B, Zhang L, Zhang L, et al. Retinal vessel extraction by matched filter with first-order derivative of Gaussian [J]. Computers in Biology and Medicine, 2010, 40 (4): 438-445.
  • 7Fraz M M, Remnino P, Hoppe A, et al. Blood vessel segmen- tation methodologies in retinal images-A survey [J]. Computer Methods and Programs in Biomedicine, 2012, 108 (1) : 407-43a.
  • 8Sun K, Chen Z, Jiang S, et al. Morphological multiseale en- hancement, fuzzy filter and watershed for vascular tree extrac- tion in angiogram [J]. Journal of Medical Systems, 2011, 35 (5): 811-824.
  • 9Ashraful Amin M, Yan Hong. High speed detection of retinal blood vessels in fundus image using phase congruency [J]. Soft Couputing, 2011 (15).. 1217-1230.
  • 10Henriksson L, Hyv/irinen A, Vanni S. Representation of cross-frequency spatial phase relationships in human visual cor- tex [J]. The Journal of Neuroscience, 2009, 29 (45): 14342-14351.

共引文献49

同被引文献19

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部