期刊文献+

移动环境下融合情境信息的群组推荐模型研究——基于用户APP行为数据的实证分析 被引量:9

Study of a Group Recommendation Model of Integrating Context Information in a Mobile Environment——Empirical Analysis Based on User APP Behavior Data
下载PDF
导出
摘要 为了提高群组推荐模型中推荐结果的准确度问题,本文研究并提出了一种融合情境信息的群组推荐模型。首先,获取用户行为情境数据,同时发掘提取单个用户行为的偏好;其次,计算单个用户行为相似度,进行群组聚类发现;然后,融入情境信息挖掘群组行为特征,并构建群组行为偏好特征向量,最后结合协同推荐思想,将群组作为整体,和其他群组对项目的历史评分进行协同,形成预测评分。在实验中,我们通过分析用户的操作流,提取了主题序列特征,然后融入了经典情境信息,得出推荐结果。结果表明,使用该模型得出的排序靠前(6位)的推荐结果较之传统(非情境)的群组推荐方法具有更高的准确性。因此,该模型更适用于移动环境下的群组推荐。 In order to improve the accuracy of recommended results in the group recommendation model, a group recommendation model integrating context information is proposed in this paper. Firstly, the user behavior context data are obtained, and the preference represented by individual user behavior is extracted. Secondly, the behavior similarity of individual users is calculated and cluster discovery is conducted. Subsequently, the group behavior characteristics are mined from context data, and then a feature vector of group behavioral preference is built. Finally, collaborative recommendation ideas are combined for the group as a whole. The collaboration also occurs with other groups producing an item history score to form a prediction score. In the experiment, we analyze the user’s operation flow, extract the theme sequence features, and then incorporate the classic context information to produce the recommendation results. The results show that the top-6 of the recommended results obtained by using this model are more accurate than those recommended by traditional(non-situational) groups. Therefore, this model is more suitable for group recommendations in mobile environments.
作者 夏立新 杨金庆 程秀峰 Xia Lixin;Yang Jinqing;Cheng Xiufeng(School of Information Management,Central China Normal University,Wuhan 43007)
出处 《情报学报》 CSSCI CSCD 北大核心 2018年第4期384-393,共10页 Journal of the China Society for Scientific and Technical Information
基金 国家社会科学基金重大项目"基于多维度聚合的网络资源知识发现研究"(13&ZD183) 国家社会科学基金青年项目"面向语义出版的数字图书馆资源多维度聚合研究"(15CTQ007) 国家自然科学基金青年项目"基于QSIM的图书馆移动用户群体行为模拟与学习兴趣引导研究"(71503097)
关键词 群组推荐 情境信息 行为偏好 主题序列 操作流 group recommendation context information behavioral preference theme sequence operation flow
  • 相关文献

参考文献7

二级参考文献97

  • 1赵银春,付关友,朱征宇.基于Web浏览内容和行为相结合的用户兴趣挖掘[J].计算机工程,2005,31(12):93-94. 被引量:36
  • 2夏敏捷,张慧档.基于Web日志挖掘的个性化服务站点[J].微计算机应用,2006,27(1):35-38. 被引量:4
  • 3宋江春,沈钧毅.一种新的Web用户群体和URL聚类算法的研究[J].控制与决策,2007,22(3):284-288. 被引量:11
  • 4asthoff, J. Modeling a Group of Television Viewers[C].In Proceedings of the Workshop Future TV in Intelligent Tutoring Systems Conference, 2002.
  • 5Jameson, A. More than the Sum of Its Members:Challenges for Group Recommender Systems[C].In Proceedings of the Internaional Working Conference on Advanced Visual Interfaces,2004.
  • 6Chen, Y L. A Group Recommendation System with Consideration of Interactions among Group Members[J].Expert Systems with Applications,2008,34(3).
  • 7Ting, P L, Y F Y, et al. A Semantic-expansion Approach to Personalized Knowledge Recommendation[J].Decision Support System, 2008.
  • 8Balabanovic, M., Shoham, Y. Fab:Content-based, Collaborative Recommendation[J].Communications of the ACM,1997,40(3).
  • 9程舒通.Web点击流的频繁模式聚类算法[J].计算机技术与发展,2007,17(9):18-20. 被引量:3
  • 10Kim,BD,Kim,SO.A new recommender system to combine content-based and collaborative filtering systems.Journal of Database Marketing,2001,6(3):244 ~ 252

共引文献137

同被引文献129

引证文献9

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部