期刊文献+

基于人眼视觉特性的深度学习全参考图像质量评价方法 被引量:11

Deep learning of full-reference image quality assessment based on human visual properties
下载PDF
导出
摘要 针对现有的图像质量评价方法普遍为人工设计特征,难以自动且有效提取到符合人类视觉系统的图像特征,受人眼视觉特性的启发,提出一种新的基于卷积神经网络的全参考图像质量评价方法(DeepFR)。该方法基于对数据集本身的学习设计了卷积神经网络DeepFR模型,利用人眼视觉系统对梯度的敏感性进行加权优化,提取了符合人眼视觉特性的视觉感知图。实验表明:设计的DeepFR模型优于已有的全参考图像质量评价方法,其预测结果与主观质量评价有很好的精确性与一致性。 Since the current image quality assessment methods are generally based on hand-crafted features, it is difficult to automatically and effectively extract image features that conform to the human visual system. Inspired by human visual characteristics, a new method of full-reference image quality assessment was proposed by this paper which was based on convolutional neural network(DeepFR).According to this method, the DeepFR model of convolutional neural network was designed which was based on the understanding of the dataset by itself using the human visual system to weight the sensitivity of the gradient, and the visual gradient perception map was extracted that was consistent with human visual characteristics. The experimental results show that the DeepFR model is superior to the current full-reference image quality assessment methods, its prediction score and subjective quality evaluation have good accuracy and consistency.
作者 姚旺 刘云鹏 朱昌波 Yao Wang;Liu Yunpeng;Zhu Changbo(Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 110016,China;University of Chinese Academy of Sciences,Beijing 100049,China;Key Laboratory of Opto-Electronic Information Processing,Chinese Academy of Sciences,Shenyang 110016,China;State Key Laboratory of Robotics,Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 110016,China)
出处 《红外与激光工程》 EI CSCD 北大核心 2018年第7期29-36,共8页 Infrared and Laser Engineering
基金 装发部共用技术项目(Y6K4250401)
关键词 图像质量评价 全参考 深度学习 卷积神经网络 人眼视觉特性 image quality assessment full-reference deep learning convolutional neural network human visual properties
  • 相关文献

参考文献2

二级参考文献3

共引文献107

同被引文献82

引证文献11

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部