期刊文献+

多特征融合的车辆识别技术 被引量:3

Multi-feature fusion vehicle identification technology
下载PDF
导出
摘要 针对运动车辆目标识别问题提出了一种自然场景下车辆识别方法。首先采用图像差分技术对目标车辆的显著特征进行统计学习,并将学习所得目标局部特征以及图像进行编码,根据以上两个信息实现目标车辆的显著性检测。其次针对车辆运动的复杂性,采用分块投影匹配方法进行全局运动估计和补偿,并利用差分技术进行运动特征检测。然后将目标车辆的显著性特征与运动特征进行融合,从而获得更精确的候选目标区域。最后对候选区域进一步使用视觉显著特征进行目标判别。实验表明该方法具有较好的目标判别性能,能较好地解决自然场景下运动车辆的识别问题。 A method of vehicle identification in natural scene was proposed for the target recognition of moving vehicles. Firstly, the image difference technique was used to study the significant characteristics of the target vehicle, and encode the local features and the image of the learning target, then the salient detection of the target vehicle was realized according to the above two information. Secondly, aiming at the complexity of vehicle movement, a block projection matching method was used for global motion estimation and compensation, and the difference technique was used to detect the motion feature. Then the target vehicle′ s saliency features and the motion features were fused to obtain more accurate candidate target areas. Finally, the candidate region was further used to discriminate the target by using the visual features. The experiment shows that the method has good performance of target discrimination and can solve the problem of vehicle motion recognition in natural scene.
作者 程全 樊宇 刘玉春 王志良 Cheng Quan;Fan Yu;Liu Yuchun;Wang Zhiliang(Mechanical and Electrical Engineering,Zhoukou Normal University,Zhoukou 466001,China;College of Network Engineering,Zhoukou Normal University,Zhoukou 466001,China;School of Computer & Communication Engineering,University of Science & Technology Beijing,Beijing 100083,China)
出处 《红外与激光工程》 EI CSCD 北大核心 2018年第7期306-311,共6页 Infrared and Laser Engineering
基金 国家自然科学基金(61401526) 河南省科技厅科技攻关项目(182102210151 182102310761)
关键词 特征融合 车辆识别 运动特征 统计学习 feature fusion vehicle identification motion feature statistic study
  • 相关文献

参考文献8

二级参考文献76

  • 1ABDULLAH-AL-WADUD M, HASANUL KABIR M, ALI AKBER DEWAN M, et al.. A dynamic histogram equalization for image contrast enhancement[J]. IEEE Transactions on Consumer Electronics, 2007, 53(2):593-601.
  • 2YANG F, WU J. An improved image contrast enhancement in multiple-peak images based on histogram equalization[J]. IEEE Conference Publications, 2010, 1:346-349.
  • 3CELIK T, TJAHJADI T. Automatic image equalization and contrast enhancement using gaussian mixture modeling[J]. IEEE Transactions on Image Processing, 2012, 21(1):145-156.
  • 4WELLING P, KIM S H, CHO S B. Brightness preserving contrast enhancement using polynomial histogram amendment. IEEE Soc Design Conference, Jeju Island, Korea, 4-7 November, 2012.
  • 5CHEN H O, KONG N S P, IBRAHIM H. Bi-histogram equalization with a plateau limit for digital image enhancement[J]. IEEE Consumer Elevtronics, 2009, 55(4):2072-2087.
  • 6GAN C, YE Z. Brightness preserving histogram equalization with maximum entropy:a variational perspective[J]. IEEE Transactions on Consumer Electronics, 2005, 51(4):1326-1334.
  • 7高有堂,田思,邱亚峰,常本康.直方图均衡化算法在微光枪瞄检测系统中的应用[J].兵工学报,2007,28(10):1205-1208. 被引量:4
  • 8KUANG K S C, AKMAI.UDDIN,CANTWELL W J. Crack detection and vertical deflection monitoring in concrete beams, using plastic optical fibre sensors [J]. Measurement Science & Technology, 2013, 14 (2) : 205-216.
  • 9HAO J Z, DONG B, VARGHESE P. An armored caBle-based fiber Bragg grating sensor array for per imeter fence intrusion detection[J]. SPIE, 2011 8332:8332013-1-9.
  • 10TANIMOLA F, HILL D. Distributed fibre optic sen- sors for pipeline protection[J]. Journal of Natural Gas Science and Engineering, 2009, 1 (4-5) : 134- 143.

共引文献101

同被引文献47

引证文献3

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部