摘要
多元函数条件极值问题,在生活中已有广泛的应用。但关于多元函数条件极值判定条件方面的研究很少。针对此问题,本文给出了新的求多元函数条件极值方法。首先,运用拉格朗日乘数法求出驻点;然后,运用泰勒展开式及隐函数微分法,计算出多元函数的条件极值的新判别法则。最后是实例验证,研究表明,本文所提出的方法是有效的。
The conditional extremum of multivariate function is widely used in life. However,little research has been done on conditional extremum decision conditions for multivariate functions. In response to this problem,this paper presents a new method for finding the extreme conditions of multivariate function conditions. First,the stagnation point is obtained by using the Lagrangian multiplier method. Then,Taylor's expansion and implicit function differential method are used to calculate the new criterion for the conditional extremum of the multivariate function. Finally,examples are given to prove that this method is more effective.
作者
王祝园
陈鹏
高继文
WANG Zhu-yuan;CHEN Peng;GAO Ji-wen(Basic Department,Hefei College of Finance and Economics,Hefei 230601,Anhui Province,China;Department of Accounting,Hefei Vocational College of Finance and Economics,Hefei 230601,Anhui Province,China)
出处
《景德镇学院学报》
2018年第3期111-113,共3页
Journal of JingDeZhen University
关键词
多元函数
条件极值
驻点
判别法则
multivariate function
conditional extrenmm
stagnation point
discriminant role