期刊文献+

由Lehmer级数导出二项式系数倒数级数

Series of Reciprocals of Binomial Coefficients by Lehmer Series
下载PDF
导出
摘要 目的利用已知级数,尝试使用裂项的方法构造出新的级数和级数恒等式。方法首先对Lehmer级数积分一次,然后对其使用裂项法,构造出一批新的分母含有奇偶性不定的因子(m+i)(i=1,2,3,4,5)与1到4个奇因子乘积的二项式系数倒数级数。结果由Lehmer级数导出二项式系数倒数级数,利用反三角函数与反双曲函数关系给出交错二项式系数倒数和二项式系数倒数数值级数恒等式。结论给出已知级数恒等式,使用裂项的方法研究二项式系数变换是组合分析的新手段,也是产生新级数的一种有效而又简洁的方法。 Objective Utilizing the known series,try to structure new series and series identities by splitting items.Methods First,the Lehmer series are integrated.Then use splitting items.These denominators have parity indefinite factors multiplied by one to four odd factors and binominal coefficients.Results The series of reciprocals of binomial coefficients is induced by Lehmer series.Staggered reciprocal binomial coefficient is given by using the relation of the inverse trigonometric function and inverse hyperbolic function.And some numerical series of reciprocals of binominal coefficients are given.Conclusion Given the known series identities,the method of split items offers a new combinatorial analysis way to study binomial coefficient transformation.Meanwhile it is a kind of effective and simple method for structured new series.
作者 杨春艳 及万会 YANG Ohun-yan, JI Wan-hui(Dept. of Foundation, Yinchuan Energy Institute, Ningxia, Yinchuan 750105, China)
出处 《河北北方学院学报(自然科学版)》 2018年第7期6-20,共15页 Journal of Hebei North University:Natural Science Edition
基金 银川能源学院科研项目(2015-KY-Y-49)
关键词 二项式系数 奇偶性不定 倒数 裂项 级数 binomial coefficient parity indefinite reciprocal split term serie
  • 相关文献

参考文献4

二级参考文献18

  • 1Lehmer D H. Interesting series involving the central binomial coefficients[J]. Amer, Math. Monthly, 1985, 7: 449-457.
  • 2Sury B. Tianning Wang, and Feng-Zhaen Zhao,Some identities involving of. binomial coefficients[J].J. integer Sequences, 2004, 7(2): 2-12.
  • 3Solo A. general properties involving reciprocal of Binomial coefficients[J]. Journal of integral se- quences, 2006, 9(4): 1-13.
  • 4Amghibech S. On sum involving Binomial coefficient[J]. Journal of integer sequences, 2007, 7(2): 1-17.
  • 5Jin-Hua Yang and Feng-zhen Zhao,Sums involving the inverses of binomial coefficients[J]. Journal of integer Sequences, 2006, 9(6): 1-11.
  • 6Trif T. combinatorial sums and series involving inverses of binomial coefficients[J]. Fibonacci Quar- terly, 2000, 38(1): 79-84.
  • 7Borwein J M, and Girgensohn R. evaluation of binomial series[J]. Aequationens Math, 2005, 70: 25-36.
  • 8R.Sprugnoli,sums of reciprocal of the central binomial coefficients, integral[J], electronic Journal of combinatorial number theory, 2006, 6: 1-18.
  • 9Jolley L B W.Summation of Series[M].second revised edition Dover Publications Inc New York,1961:156-159.
  • 10Sofo A.Computation Techniques for the Summation of Series[M].Kluwer Academic Plenum Publishers,2003:123.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部