期刊文献+

(p,k)匿名数据集的增量更新算法 被引量:3

A dynamic update algorithm on (p,k) anonymity
下载PDF
导出
摘要 随着大数据时代的到来,数据数量呈指数形式增长,一次性发布所有的数据已无法满足实时掌握数据的需求,提出(p,k)匿名增量更新算法,动态更新匿名发布数据表。为避免数据动态更新时造成隐私泄露,算法利用加密技术对敏感属性进行保护,建立暂存表及临时表辅助待更新数据及时插入。(p,k)匿名增量更新算法改善了传统算法无法实时更新数据的问题,保证了数据的实时性,并利用加密技术增强了数据的隐私保护性。实验结果表明,(p,k)匿名增量更新算法在较少信息损失量以及较快更新速率的情况下,实现了数据实时更新的目标。 With the arrival of the era of big data,the number of data increases exponentially,onetime release of all data can no longer meet the needs of real-time data,so an incremental update algorithm on(p,k)anonymity is proposed to dynamically update anonymous publication data tables.In order to avoid privacy leakage when data is dynamically updated,the algorithm uses encryption technology to protect sensitive attributes.We create a temporary table and an interim table to aid the timely insertion of updated data.The incremental update algorithm on(p,k)anonymity improves the problem that traditional algorithms cannot update data in real time,ensures the real-time performance of data,and uses encryption technology to enhance data privacy protection.Experimental results show that the incremental update algorithm on(p,k)anonymity achieves the goal of real-time data update with less information loss and faster update rate.
作者 贾俊杰 闫国蕾 邢里程 陈菲 JIA Jun-jie;YAN Guo-lei;XING Li-cheng;CHEN Fei(School of Computer Science and Engineering,Northwest Normal University,Lanzhou 730070,Chin)
出处 《计算机工程与科学》 CSCD 北大核心 2018年第7期1206-1212,共7页 Computer Engineering & Science
基金 兰州市科技发展计划项目(20141256) 甘肃省档案科技项目(2016-09)
关键词 (p k)匿名 动态更新 隐私保护 敏感属性加密 (p k) anonymity dynamic update privacy protection sensitive attribute encryption
  • 相关文献

参考文献5

二级参考文献175

  • 1杨晓春,刘向宇,王斌,于戈.支持多约束的K-匿名化方法[J].软件学报,2006,17(5):1222-1231. 被引量:60
  • 2Machanavajjhala A,Gehrke J,Kifer D.l-Diversity:Privacy beyond K-anonymity.In:Liu L,Reuter A,Whang KY,Zhang J,eds.Proc.of the 22nd Int'l Conf.on Data Engineering.Atlanta:IEEE Computer Society,2006.24-35.
  • 3Wong RC,Li J,Fu AW,Wang K.(a,k)-Anonymity:An enhanced K-anonymity model for privacy-preserving data publishing.In:Eliassi-Rad T,Ungar LH,Craven M,Gunopulos D,eds.Proc.of the 12th Int'l Conf.on Knowledge Discovery and Data Mining.New York:ACM Press,2006.754-759.
  • 4Li N,Li T,Venkatasubramanian S.t-Closeness:Privacy beyond k-anonymity and l-diversity.In:Dogac A,Ozsu T,Sellis T,eds.Proc.of the 23rd Int'l Conf.on Data Engineering.Istanbul:IEEE Computer Society,2007.106-115.
  • 5Xiao X,Tao Y.Personalized privacy protecting.In:Chaudhuri S,Hristidis V,Polyzotis N,eds.Proc.of the Int'l Conf.on Management of Data.Chicago:ACM Press,2006.229-240.
  • 6Fung BCM,Wang K,Yu PS.Top-Down specialization for information and privacy preservation.In:Aberer K,Franklin M,Nishio S,eds.Proc.of the 21st Int'l Conf.on Data Engineering.Tokyo:IEEE Computer Society,2005.205-216.
  • 7LeFevre K,DeWitt DJ,Ramakrishnan R.Incognito:Efficient full-domain K-anonymity.In:Ozcan F,ed.Proc.Of the Int'l Conf.On Management of Data.Maryland:ACM Press,2005.49-60.
  • 8Aggarwal G,Feder T,Kenthapadi K,Motwani R,Panigrahy R,Thomas D,Zhu A.Anonymizing tables.In:Eiter T,Libkin L,eds.Proc.of the 10th Int'l Conf.on Database Theory.Edinburgh:Springer-Verlag,2005.246-258.
  • 9Wang K,Fung BCM.Anonymizing sequential releases.In:Eliassi-Rad T,Ungar LH,Craven M,Gunopulos D,eds.Proc.of the 12th Int'l Conf.on Knowledge Discovery and Data Mining.Philadelphia:ACM Press,2006.414-423.
  • 10Xiao X,Tao Y.Anatomy:Simple and effective privacy preservation.In:Dayal U,Whang KY,Lomet DB,Alonso G,Lohman GM,Kersten ML,Cha SK,Kim YK,eds.Proc.of the 32nd Int'l Conf.on Very Large Data Bases.Seoul:VLDB Endowment,2006.139-150.

共引文献321

同被引文献62

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部