期刊文献+

基于描述文本和实体标签的网络视频分类算法

Web Video Classification Algorithm Based on Description Text and Entity Tag
下载PDF
导出
摘要 目前,各大社交平台和视频点播网站的网络视频数量出现了爆炸式的增长,如何快速准确地对这些网络视频进行归类和管理成为了研究的热点问题﹒为了较好地解决这种分类任务,文中提出了基于描述文本和实体标签的网络视频分类算法,该算法结合了描述文本内容和知识图谱中的实体标签来构造文档-特征矩阵﹒实验结果表明使用了实体标签的视频分类算法性能更好,平均精确率和平均召回率以及平均F1值比未使用实体标签的视频分类算法要高2%以上﹒ At present there has been an explosive growth in the number of web video on major social platforms and video on demand web sites. How to quickly and accurately classify and manage these web videos has become a hot spot of research. In order to solve this classification task, a web video classification algorithm based on description text and entity tag was proposed in this paper. The algorithm combines the description text and the entity tags in the knowledge graph to construct a document-feature matrix. The experimental results show that the video classification algorithm using the entity tag shows better performance, and the average precision and average recall and the average F1 value are higher 2% than the video classification algorithm of the unused entity tag.
作者 何春辉 HE Chunhui(School of Mathematics and Computational Sciences, Xiangtan University, Xiangtan, Hunan 411105, China)
出处 《湖南城市学院学报(自然科学版)》 CAS 2018年第3期46-48,共3页 Journal of Hunan City University:Natural Science
关键词 特征提取 视频分类 实体标签 SVM feature extraction video classification entity tag SVM
  • 相关文献

参考文献6

二级参考文献33

  • 1王亮申,欧宗瑛,朱玉才,侯杰,于京诺.基于SVM的图像分类[J].计算机应用与软件,2005,22(5):98-99. 被引量:18
  • 2Vapnik V N.The nature of statistical learning theory[M].New York:Springer Verlag,1995:4-80.
  • 3Burges C J C.A tutorial on Support Vector Machines for Pattern Recognition[J].Knowledge Discovery and Data Mining,1998,2(2):121-167.
  • 4Weston J,Watkins C.Support vector machines for multi-class pattern recogni-tion[D].In Proceedings of 7th European Symposium on Artificial Neural Networks,1999:219-224.
  • 5Platt J,Cristianini N,Shawe-Taylor J.Large margin DAGs for multiclass classification[A].Leen T K,Müller K R.Advancesin Neural Information Processing Systems 12[C].S A Solla:The MIT Press,2000:547-553.
  • 6Mu Xiang-ming. Content-based video retrieval:does video's semantic visual feature matter? [ C]///Proceedings of the 29th Annual International ACM SIGIR Conference on Re- search and Development in Information Retrieval. Wa- shington : ACM, 2006:679.
  • 7战学钢,姚天顺.基于语义分析的标题分类方法[C]∥中文信息处理国际会议论文集.北京:清华大学出版社,1998:321-324.
  • 8陈磊.基于HNC语义分析的中文标题分类方法[C]∥全国第五届计算机语言联合学术会议论文集.北京:清华大学出版社,1999:371-375.
  • 9Song D, Lau R Y K, Bruza P D, et al. An intelligent infor- mation agent for document title classification and filtering in document-intensive domains [J]. Decision Support Sys- tems,2007,44( 1 ) :251-265.
  • 10Kotsiantis S B. Supervised machine learning: a review of classification techniques [ J ]. Informatica, 2007,31 ( 3 ) : 249-268.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部