摘要
针对长度不限、宽度固定的卷材的直冲圆形件下料问题,采用自适应遗传模拟退火算法(adaptive genetic simulatecl annearling algorithm,AGSA)优化毛坯序列,并采用最佳位置(best location position,BLP)算法决定毛坯放置位置。在遗传算法的基础上,引入环形交叉策略和自适应交叉变异概率,有效地提高收敛速度。将模拟退火算法与遗传算法结合,通过退温机制更改接受概率,避免遗传算法陷入局部最优解导致早熟。实验结果表明:本文提出的算法计算时间合理,能有效提高收敛速度和材料利用率。
Aiming at the problem of circular stock problem on infinite length and fixed width coils,in this paper,adaptive genetic simulated annealing algorithm is used to optimize the items sequence,and the Best Location Position algorithm is used to determine the blanking position. Based on genetic algorithm,the introduction of ring-shaped crossover strategy and adaptive crossover mutation probability can improve the convergence rate effectively. By applying temperature retreat mechanism to change acceptance probability,the combination of simulated annealing algorithm and genetic algorithm can avoid the local optimal solution and precocious. Experimental result proves that the computational time is reasonable,and the presented algorithm can improve the coverage rate and average utilization rate of material effectively.
作者
陈燕
吴阳
朱苍璐
CHEN Yan;WU Yang;ZHU Cang-lu(School of Computer and Electronic hdbnnation,Guangxi University,Nanning 530004,China;School of Business Administration,South China University of Technology,Guangzhou 510640,China)
出处
《广西大学学报(自然科学版)》
CAS
北大核心
2018年第3期1082-1088,共7页
Journal of Guangxi University(Natural Science Edition)
基金
国家自然科学基金资助项目(61363026)
国家自然科学基金资助项目(71371058)
关键词
圆形件下料
自适应遗传算法
模拟退火算法
BLP
cutting stock of circle
adaptive genetic algorithm
simulated annealing algorithm
BLP