期刊文献+

应用于运动目标检测的改进参数估计背景建模研究(英文)

Background modeling based on improved parameter estimation for moving target detection
下载PDF
导出
摘要 为了提高目标检测的识别率,提出了一种基于改进Student-t分布参数估计的背景建模算法,适用于各种运动视频的目标检测,如体育视频应用领域。首先对传统基于有限混合模型的背景建模方法进行了分析,然后利用Student-t分布构建了背景模型参数估计方法,该方法通过改进期望值最大算法完成参数估计,并对参数空间进行了分割。仿真试验结果显示:相比高斯多态背景建模,K-均值和模糊C-均值聚类背景建模分割效果较好,因此运动目标检测精确度更高,且训练速度更快。验证了提出算法的有效性和先进性。 In order to improve the recognition rate of target detection,a background modeling algorithm based on improved Student-t distribution parameter estimation is proposed in this paper,which is suitable for all kinds of motion video target detection such as sports video application field.Firstly,the background modeling method based on the traditional finite model is analyzed.Then,the Student-t distribution is used to construct the background model parameter estimation method.The method is used to complete the parameter estimation by improving the maximum expectation algorithm,and the parameter space is segmented.The simulation results show that the segmentation effect of the proposed algorithm is better as compared with the Gaussian background modeling,Kmeans and fuzzy C-means clustering background modeling,and the motion target detection accuracy is higher and the training speed is faster.The results verify that the validity and advancement of the proposed algorithm.
作者 朱宜强 丁锡龙 Yi-qiang ZHU;Xi-long DING(School of Electric Engineering,Wuhu Institute of Technology,Wuhu 241005,China;Weifang University of Science & Technology,Sino-India Computer SoftWare Institute,Shouguang 262700,China)
出处 《机床与液压》 北大核心 2018年第12期171-176,共6页 Machine Tool & Hydraulics
关键词 运动目标检测 Student-t 背景建模 背景分割 Moving object detection Student-t Background modeling Background segmentation
  • 相关文献

参考文献4

二级参考文献65

  • 1SENST T, EVANGELIO R H, SIKORA T. Detecting people carrying objects based on an optical flow motion model [ C]//Proc of IEEE Workshop on Applications of Computer Vision. Washington DC : IEEE Computer Society, 2011 : 301 - 306.
  • 2WENG Mu-yun, HUANG Guo-ce, DA Xin-yu. A new interframe difference algorithm for moving target detection[ C ]//Proe of the 3rd International Congress on Image and Signal Processing: 2010: 285- 289.
  • 3MOHAMED S S, TAHIR N M, ADNAN R. Background modeling and background subtraction performance for objecl: detection [ C ]// Proc of the 6th International Colloquium on Signal Processing and Its Applications. 2010:236- 241.
  • 4STAUFFER C, GI'UMSON W E L. Learning patterns of activity using real-time tracking[ J ]. IEEE Trans on Pattern Analysis & Ma- chine Intelligence,2000,22 ( 8 ) :747- 757.
  • 5CHEN Yu-ting, CHEN Chu-song, HI.IANG Chun-rong, et al. Effi- cient hierarchical method for hackground subtraction [ J ]. Pattern Recognition ,2007,40(10) :2706-2715.
  • 6LEE S, LEE J, HAYES M H, et al. Adaptive backgroumt generation for automatic detection of initial object region in multiple color-fiher aperture camera-based surveillance system[ J ]. IEEE Trans on Con- sumer Electronics,2012,58( I ) : 104- 110.
  • 7MADDALENA L, PETROSINO A. A self-arganizing approach to background subtraction for visual surveillance applications[ J ]. IEEE Trans on Image Processing,2008,17(7 ) :1168- 1 177.
  • 8WREN C R, AZARBAYEJANI A, DARRELL T, et al. Pfinder: Real-time tracking of the human body [ J ]. Pat- tern Analysis and Machine Intelligence, IEEE Transac- tions on, 1997, 19(7) : 780-785.
  • 9HARITAOGLU I, HARWOOD D, DAVIS L S. W 4 S: A real-time system for detecting and tracking people in 2 1/2DIM]. Computer Vision-ECCV98. Springer Berlin Heidelberg, 1998 : 877-892.
  • 10ZIVKOVIC Z. Improved adaptive Gaussian mixture model for background subtraction [ C ]. Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on. IEEE, 2004, 2: 28-31.

共引文献120

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部