摘要
建立一类非线性分数阶nabla差分方程▽(▽_α~ax(t))+f(t,x(t))= g(t)解的振动性的两个充分条件,其中,初值条件是▽_a^(-(2-α))x(a +1)=_c1 和▽▽_a^(-(2-α))x(a+1)=c_2,并给出两个例子来说明该条件是最佳的.
Two sufficient conditions for oscillation of a nonlinear fractional nabla difference equation of the form ▽(▽α~ax(t))+f(t,x(t))= g(t),t ∈ N(a+1),with initial condition▽a^(-(2-α))x(a +1)=c1 and▽▽a^(-(2-α))x(a+1)=c2 are established.And two examples are presented to indicate the sharpness of our conditions.
作者
王霞
徐润
WANG Xia, XU Run(School of Mathematical Sciences,Qufu Normal University,273165,Qufu,Shandong,PR)
出处
《曲阜师范大学学报(自然科学版)》
CAS
2018年第3期11-18,共8页
Journal of Qufu Normal University(Natural Science)
基金
National Natural Science Foundation of China(11671227)