期刊文献+

氮液滴在气流中的破碎和碰撞模拟 被引量:7

Numerical study on the breakup and collision of nitrogen droplets in high-speed gas flow
下载PDF
导出
摘要 为揭示喷雾冷却中雾场氮液滴的行为,基于流体体积法(VOF)建立氮液滴的碰撞模型,对氮液滴在高速气流下的不同碰撞过程进行数值模拟,研究碰撞过程中液滴形态及气隙压力的变化情况.设定相同与不同液滴尺寸的液滴碰撞,以及对心与偏心液滴碰撞等4种不同条件,分析在各种碰撞条件下,碰撞初始条件改变对于液滴形态与后续液滴大小的影响.数值计算结果表明:高速气流下液滴发生碰撞时,其破碎形态主要由气流速度决定,而碰撞参数B主要决定液滴拉伸形成韧性带的方向;液滴接触时形成的气体间隙,其压力呈现先增大后减小的趋势;与对心碰撞过程相比,偏心碰撞时气隙压力会更快释放;相同尺寸对心碰撞的后续液滴分离情况最差,这是由于韧性带沿着气流方向,导致液膜没有明显破碎,对于后续液滴蒸发不利. To obtain the droplet behavior in spray cooling,a CFD model based on volume of fluid( VOF) approach is built to study the droplet collisions in the high-speed gas flow. The changes of droplet shape and gap pressure during the collision process are determined. Four different conditions are considered including the collisions between two droplets of same or different size,the center collision and eccentric collision. The impact of initial conditions on droplet morphology and the subsequent droplets size are discussed under various collision conditions. The results show that the breakup form mainly depends on the velocity of gas flow when droplets collide in high-speed gas flow.Collision parameter B mainly determines the direction of the elongated ligament. A gas gap is formed before droplets merge,and the pressure in the gap increases at the beginning of the collision and then decreases to gas pressure.Since the merged droplet can rotate during the eccentric collision process,pressure in the gas gap can release faster compared with center collision process. The droplet detachment is the poorest in the collisions between droplets of same size because the elongated ligament is in the direction of gas flow. Under this condition,there is no breakup of the liquid film,and therefore the droplet evaporation is worst.
作者 廖达雄 张海洋 阮一逍 薛绒 刘秀芳 侯予 LIAO Daxiong1, ZHANG Haiyang1, RUAN Yixiao2, XUE Rong2, LIU Xiufang2, HOU Yu2(1. China Aerodynamics Research and Development Center, Mianyang 621000, Sichuan,China;2. School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Chin)
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2018年第7期185-191,共7页 Journal of Harbin Institute of Technology
基金 国家自然科学基金(51406160) 中国博士后科学基金(2014M560773)
关键词 喷雾冷却 液氮 破碎 碰撞 VOF方法 spray cooling liquid nitrogen breakup collision VOF method
  • 相关文献

参考文献3

二级参考文献40

  • 1胡炎楷.新型喷雾风机在空调中应用的节能[J].现代节能,1994,10(1):19-21. 被引量:1
  • 2刘波,曹志鹏,高嵩,靳军,周强.来流含水对航空发动机风扇/压气机特性的影响[J].航空动力学报,2005,20(6):1041-1047. 被引量:11
  • 3Brazier-Smith P, Jennings S, Latham J. The Interaction of Falling Rain Drops: Coalescence [J].Proccedings of the Royal Society of London A,1972(326) :393-408.
  • 4O' Rourke P J. Collective Droplets on Vaporizing Liquid Sprays [D]. Princeton: University of Princeton, 1981.
  • 5Amsden A A, O'Rourke P J, Butler T D. KIVAⅡ: A Computer Program for Chemically Reactive Flows with Sprays [R]. Los Alamos National Laboratory Report, LA-11560-MS,1989.
  • 6Tennison P J, Georjon T L, Farrell P V, et al. Experimental and Numerical Study of Sprays from a Common Rail Injection System for Use in an HSDI Diesel Engine[C]. SAE Paper 980809, 1998.
  • 7Post S L, Abraham J. Modeling the Outcome of Drop-Drop Collisions in Diesel Sprays [J]. International Journal of Multiphase Flow, 2002,28 (6):997-1 019.
  • 8Schmidt D P, Rutland C J. A New Droplet Collision Algorithm [J]. Journal of Computational Physics, 2000, 64(1):62-80.
  • 9Nordin N P. A Complex Chemistry Modeling of Diesel Spray Combustion[D]. Chalmers: Chalmers University of Technology, 2000.
  • 10Estrade J P, Carentz H, Lavergne G. Experimental Investigation of Dynamic Binary Collision of Ethanol Droplets-A Model for Droplet Coalescence and Bouncing [ J]. International Journal of Heat and Fluid Flow, 1999,20(5) :486-491.

共引文献36

同被引文献54

引证文献7

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部