期刊文献+

机器学习辅助IMU人体跌倒状态识别 被引量:4

Machine Learning Assisted IMU Human Fall State Recognition
下载PDF
导出
摘要 针对单一传感器在人体运动状态监测中误差较大的问题,本文采用了高精度的陀螺加速度计MPU6050模块。该模块使用陀螺仪输出的人体运动信息对加速度传感器采集到的姿态角信息进行修正,提高测量精度。采用机器学习的方法对样本数据进行分析,获得分类阈值。当人体由静止到跑步或由站立到坐下等状态转移时,加速度也会突然增大,有可能达到跌倒时的阈值。当采集的加速度信息的特征值大于阈值时,通过分析其产生峰值时的加速度值和该时刻及之后的角度变化,来确定是否发生跌倒事件。 For the problem of high bias in the monitoring of human motion in a single sensor,the high precision gyro accelerometer MPU6050 module is adopted. The module uses the human body motion information output from the gyroscope to correct the attitude angle information collected by the acceleration sensor to improve the measurement accuracy. The method of machine learning is used to analyze the sample data and obtain the threshold of classification. When the human body moves from static to running or standing to sit and down,the acceleration will suddenly increase and it is possible to reach the threshold when it falls. When the feature value of the acquired acceleration information is bigger than the threshold value,it is determined whether or not a fall event has occurred by analyzing the acceleration value at the time of generating the peak value and the angle change after that time and thereafter.
作者 袁国良 樊肖爽 Yuan Guoliang;Fan Xiaoshuang(Department of Electronics,College of Information Engineering,Shanghai Maritime University,Shanghai 201306,China)
出处 《单片机与嵌入式系统应用》 2018年第6期25-28,41,共5页 Microcontrollers & Embedded Systems
关键词 姿态角 机器学习 阈值 attitude angle machine learning threshold value
  • 相关文献

参考文献5

二级参考文献69

  • 1艾海舟,郝放,刘文举.基于人工神经元网络的移动机器人导航研究[J].机器人,1995,17(1):32-35. 被引量:7
  • 2吉训生,王寿荣,许宜申,盛平.自适应Kalman滤波在MEMS陀螺仪信号处理中的应用[J].传感器与微系统,2006,25(9):79-81. 被引量:23
  • 3Tao H, Sawhney H S, Kumar R. Object tracking with Bayesian Estimation of Dynamic Layer Representation [J]. IEEE Trans. Pattern Anal. Machine Intell. , 2002, 24(1):75 -89.
  • 4Gu C, Lee M C. Semiautomatic Segmentation and Tracking of Semantic Video Objects [J]. IEEE Trans. Circuits Syst. Video Technol. , 1998, 8(5): 572-584.
  • 5Paragios N, Deriche R. Geodesic Active Regions for Motion Estimation and Tracking [C]//The Proceedings of the Seventh IEEE International Conference on Computer Vision. NY: IEEE Press, 1999: 224- 240.
  • 6Peterfreund N. Robust Tracking of Position and Velocity with Katman Snakes [J]. IEEE Trans. Pattern Anal. Machine Intell. , 1998, 21(6): 564-569.
  • 7Sun S, Haynor D R, Kim Y. Semiautomatic Video Object Segmentation Using VSnakes [J]. IEEE Trans. Circuits Syst. Video Technol. , 2003, 13(1) : 75 - 82.
  • 8Beymer D, MeLauehlan P, Coifman B, etc al. A Real-time Computer Vision System for Measuring Traffic Parameters [C]// 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. NY: IEEE Press, 1997: 495 -501.
  • 9Kay S M. Fundamentals of Statistical Signal Processing: Estimation Theory Volume 1 [M]. NJ: Prentice Hall, 1993.
  • 10Kim C, Hwang J N. Fast and Automatic Video Object Segmentation and Tracking for Content-Based Applications [J]. IEEE Trans. on Circuits and Systems for Video Technology, 2002, 12(2) : 122 - 129.

共引文献195

同被引文献51

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部