期刊文献+

基于PSO-RBF的输电线路覆冰预测研究 被引量:3

Prediction Research on Transmission Line Icing Based on Particle Swarm Optimization-Radial Basis Function
下载PDF
导出
摘要 覆冰后的架空输电线路在风载荷的作用下,容易产生导线舞动现象,严重危害输电线路安全。提出一种基于PSO-RBF的神经网络模型对输电线路的覆冰情况进行预测,对微气象参数影响因子进行排序,选取合适的微气象因素作为模型的输入,降低建模输入的维度,并通过粒子群算法对RBF神经网络参数进行优化,与单一的RBF神经网络相比提高了预测精度,能及时了解导线覆冰的趋势并给出预警,有效防止严重覆冰事故的发生。 The icing overhead transmission lines under the action of wind load are easy to generate the galloping phenomenon, which is seriously harmful to the safe operation of transmission lines. This paper proposed a kind of neural network model based on particle swarm optimization-radial basis function(PSO-RBF) to carry out prediction for the icing condition of transmission lines, to sort the micro meteorological parameters, to select the suitable micro meteorological parameters as the input of model and to reduce the dimensions of modeling input. The algorithm of PSO was used to optimize the RBF neural network and compared with the single RBF neural network, its prediction accuracy was improved, which makes the icing trend of transmission lines known in time with warning to effectively prevent serious icing accidents.
作者 焦晗 黄陈蓉 李焱飞 JIAO Han;HUANG Chen-rong;LI Yan-fei(School of Electric Power Engineering,Nanjing Institute of Technology,Nanjing 211167,China)
出处 《电工电气》 2018年第6期33-36,共4页 Electrotechnics Electric
基金 南京工程学院大学生科技创新基金项目(TB201717035)
关键词 架空输电线路 覆冰预测 微气象 神经网络 overhead transmission line icing prediction microclimate neural network
  • 相关文献

参考文献9

二级参考文献139

共引文献647

同被引文献18

引证文献3

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部