期刊文献+

In(OH)_3InOOH异质结的热处理法制备与光催化性能研究 被引量:1

Fabrication of In(OH)_3/InOOH heterostructures by thermal treatment and their photocatalytic properties
下载PDF
导出
摘要 以聚乙二醇(PEG)4000作为分散剂,采用常压回流法合成了形貌和尺寸较为均一的棒状In(OH)_3纳米晶体,并以此为前驱体,通过热处理法分别获得了In(OH)_3/InOOH异质结、In(OH)_3/In_2O_3异质结和In_2O_3纯相纳米棒,初步研究了各样品对甲基紫的光催化降解性能.TG,XRD,UVDRS等实验结果表明,煅烧温度是不同结构异质结形成的关键因素,不同热处理温度所得样品的光催化活性不同,180℃下热处理所得In(OH)_3/InOOH异质结的光催化活性最高,40min内甲基紫的脱色率可达到99.7%. In this paper, In(OH) 3 nanorods with uniform shape and size are synthesized by refluxing at atmospheric pressure using polyethylene glycol (PEG) 4000 as dispersant .Then using In(OH) 3 nanorods as precursor , In(OH) 3/InOOH heterostructure , In(OH) 3/In 2O 3 heterostructure and monophase In 2O 3 are obtained by thermal treatment.Furthermore,the photocatalytic activities of above samples are investigated by their ability to degrade methyl violet. The results of TG,XRD and UVDRS showed that the calcinations temperature plays a key role in the formation of heterojunctions with different structures,and samples play different photocatalytic activity. In(OH) 3/InOOH heterostructure obtained at 180 ℃ is the best one,which can degrade 99.7% methyl violet within 40 min.
作者 钱琛 郭平 陈丽萍 周慧 QIAN Chen;GUO Ping;CHEN Li-ping;ZHUO Hui(College of Chemistry and Chemical Engineering,Yangzhou Polytechnic Institute,Yangzhou 225127,Jiangsu,China;College of Chemistry and Chemical Engineering,Yangzhou University,Yangzhou 225002,Jiangsu,China)
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2018年第4期69-75,共7页 Journal of Northwest Normal University(Natural Science)
基金 国家自然科学基金资助项目(21273194) 江苏省高校品牌专业建设工程资助项目(PPZY2015B180) 扬州市自然科学基金资助项目(YZ2015110)
关键词 In(OH)3 IN2O3 异质结 聚乙二醇(PEG) 光催化作用 indium hydroxide indium oxide heterostructures polyethylene glycol (PEG) photocatalytic activity
  • 相关文献

参考文献2

二级参考文献27

  • 1Watanabe T, Takirawa T, Honda K. J. Phys. Chem., 1977, 81:1845-1851.
  • 2Chen C, Zhao W, Zhao J C. Chem. Eur. J., 2004,111:1956-1965.
  • 3Wu T X, Liu G M, Zhao J C. J. Phys. Chem., 1998,102: 5845-5851.
  • 4Hoffmann M R, Martin S T, Choi W, et al. Chem. Rev., 1995, 95(1):69-96.
  • 5Fujishima A, Rao T N, Tryk D A. J. Photochem. Photobiol. C: Photochem. Rev., 2000,1:1-21.
  • 6Fu H B, Zhang L W, Zhu Y F, et al. Appl. Catal. B: Environ., 2006,66:100- 110.
  • 7WANG Yong-Qiang(王永强), YU Xiu-Juan(于秀娟), SUN De-Zhi(孙德智), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2006,22(4):771-774.
  • 8Lehmann M S, Larsen F K, Poulsen F R, et al. Acta Chem. Scand., 1973,42:1-27.
  • 9Li Z H, Xie Z P, Fu X Z, et al. J. Phys. Chem. C, 2007,111: 18348-18352.
  • 10Yu D P, Yu S H, Zhang S Y, et al. Adv. Funct. Mater., 2003, 13:497-501.

共引文献5

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部