摘要
本文研究了Newman-α型有理算子逼近|x|~α(1≤α<2)收敛速度的问题,取插值结点组为X={x_i=b^i,b=m^(-1/ n^(1/2))}_i^n=1,其中e<m<n.利用基本不等式以及放缩法,获得了逼近阶为3e-αn^(1/2) /logm.
In this paper, we study the problem of the convergence rate of Newman-αrational operator approximation to |x|α(1 ≤ α 2), and take the interpolation node group as X={xi=b^i,b=m^(-1/ n^(1/2))}i^n=1, where e m n. By using the basic inequality and the scaling method, we obtain that the approximation order is 3e-αn^(1/2) /logm.
作者
许江海
赵易
XU Jiang-hai;ZHAO Yi(School of Science,Hangzhou Dianzi University,Hangzhou 310018,China;School of Science,Hangzhou Normal University,Hangzhou 311121,China)
出处
《数学杂志》
2018年第4期693-695,共3页
Journal of Mathematics
基金
国家自然科学基金资助项目(11601110)
关键词
有理插值
Newman-α型有理算子
逼近阶
rational interpolation
Newman-α type rational operators
order of approxima-tion