摘要
本文研究了一类具有反馈控制的随机logistic种群系统的均值稳定性与灭绝性.利用分析法和伊藤公式等方法,几乎得到了该种群均值稳定性与灭绝性的充要条件;然后又把该模型推广到一般情形,考虑了一类具有反馈控制和时滞的n个种群的随机Lotka-Volerra竞争系统的均值稳定性与灭绝性,并提出了该系统各种群均值稳定与灭绝的充分条件.
Stability in the mean and extinction of a stochastic logistic population system with feedback controls and delays are studied in this paper. By using the analytic method and itˇo's formula, necessary and sufficient condition for the stability in the mean and extinction of the population are almost obtained; Then we extend the model to general case, so that the stability in the mean and extinction of n species stochastic Lotka-Volerra competitive system with feedback controls and delays are considered, and sufficient conditions for stability in the mean and extinction of each population are established.
作者
戴祥军
毛志
徐松金
DAI Xiang-jun;MAO Zhi;XU Song-jin(School of Data Science,Tongrvn University,Tongrvn 554300,Chin)
出处
《数学杂志》
2018年第4期721-730,共10页
Journal of Mathematics
基金
贵州省科技厅合作协议项目(黔科合LH字[2016]7300号)
贵州省创新群体重大研究项目(黔教合KY字[2016]051)
关键词
反馈控制
均值稳定性
灭绝性
时滞
feedback controls
stability in the mean
extinction
delay