期刊文献+

基于用户聚类和Logistic函数改进的协同过滤算法 被引量:4

Improved collaborative filtering algorithm based on user clustering and Logistic function
下载PDF
导出
摘要 当前,互联网上存在的商品数以亿计,如何向用户推荐其感兴趣的项目成为一个极具挑战的问题。传统基于用户的协同过滤算法(collaborative filtering)在海量数据情况下存在推荐精度不高、多样性和新颖性不足的缺点。针对以上不足,提出一种基于用户聚类和Logistic函数改进的协同过滤算法。算法基于用户模糊聚类,通过融入用户特征属性相似度度量策略和Logistic改进的协同过滤算法来提升推荐效果。实验结果表明该算法能在保证推荐的有效性同时较好地兼顾推荐的准确性和多样性。 How to recommend a commodity to a user is a problem when its number is huge. Traditional collaborative filtering algorithm in accuracy is not high and lack of diversity and novelty in the big data environment. This paper proposed a improved collaborative filtering algorithm based on user clustering and Logistic function which improved collaborative filtering algorithm and incorporate user's features and attributes based on user-clustering. The experiment result shows that this algorithm is effective,at the same time it can ensure the recommended accuracy and diversity.
作者 刘榕城 汤鲲 彭艳兵 LIU Rong-cheng;TANG Kun;PENG Yan-bing(Wuhan Research Institute of Posts and Telecommunications,Wuhan 430074,China;NanjingFiberHome Software Technology Co.Ltd.,Nanjing 210019,China)
出处 《电子设计工程》 2018年第13期28-32,共5页 Electronic Design Engineering
关键词 Logistic函数 人物特征属性 协同过滤 用户聚类 Logistic function character attribute collaborative filtering user-clustering
  • 相关文献

参考文献9

二级参考文献90

  • 1吴泓辰,王新军,成勇,彭朝晖.基于协同过滤与划分聚类的改进推荐算法[J].计算机研究与发展,2011,48(S3):205-212. 被引量:20
  • 2陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 3Liu JG, Zhou T, Wang BH. Research progress of personalized recommendation system. Progress in Natural Science, 2009,19(1): 1-15 (in Chinese with English abstract).
  • 4Ma H, Yang HX, Lyu MR, King I. SoRec: Social recommendation using probabilistic matrix factorization. In: Proc. of the ACM Int’l Conf. on Information and Knowledge Management. ACM Press, 2008. 978-991. [doi: 10.1145/1458082.1458205].
  • 5Ma H, King I, Lyu MR. Learning to recommend with social trust ensemble. In: Proc. of the Annual Int’l ACM SIGIR Conf. on Research and Development in Information Retrieval. ACM Press, 2009. 203-210. [doi: 10.1145/1571941.1571978].
  • 6Guo L, Ma J, Chen ZM, Jiang HR. Learning to recommend with social relation ensemble. In: Proc. of the ACM Int’l Conf. on Information and Knowledge Management. ACM Press, 2012. 2599-2602. [doi: 10.1145/2396761.2398701].
  • 7Jamali M, Ester M. TrustWalker: A random walk model for combining trust-based and item-based recommendation. In: Proc. of the ACM SIGKDD Conf. on Knowledge Discovery and Data Mining. ACM Press, 2009. 397-405. [doi: 10.1145/1557019. 1557067].
  • 8Jamali M, Ester M. A matrix factorization technique with trust propagation for recommendation in social networks. In: Proc. of the ACM Conf. on Recommender Systems. ACM Press, 2010. 135-142. [doi: 10.1145/1864708.1864736].
  • 9Zhou TC, Ma H, King I, Lyu MR. UserRec: A user recommendation framework in social tagging systems. In: Proc. of the 24th AAAI Conf. on Artificial Intelligence. AAAI Press, 2010. 1486-1491.
  • 10Wu L, Chen EH, Liu Q, Xu LL, Bao TF, Zhang L. Leveraging tagging for neighborhood-aware probabilistic matrix factorization. In: Proc. of the ACM Int’l Conf. on Information and Knowledge Management. ACM Press, 2012. 1854-1858. [doi: 10.1145/ 2396761.2398531].

共引文献236

同被引文献49

引证文献4

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部