期刊文献+

低温烧结纳米铜焊膏的制备及其连接性能分析 被引量:7

Preparation and connection performance analysis of solder paste by low-temperature sintering Cu nanoparticles
下载PDF
导出
摘要 甲酸处理铜纳米颗粒的方法制备可低温烧结的纳米铜焊膏可用于低温连接大功率器件.首先利用改良后的多元醇法制备平均粒径为30 nm的铜纳米颗粒,然后利用甲酸浸泡去除铜纳米颗粒表面的氧化物,之后将铜纳米颗粒与乙二醇混合后制备固含量为70%的焊膏,并在160~320℃的烧结温度、10 MPa压力、保温5 min的条件下烧结连接DBC陶瓷基板和金属化的SiC芯片.结果表明,通过扫描电镜和透射电镜观察连接接头形貌,烧结接头内部烧结组织粗大,烧结铜层和铜焊盘的界面通过冶金结合紧密连接,形成了拥有高抗剪强度、高导电性的连接接头. The Cu nanoparticles( Cu NPs) solder paste was applied to connect high-power semiconductor devices at low temperature. The preparation method of the Cu NPs solder paste included the following steps: First,Cu NPs with an average particle size of 30 nm were synthesized by the modified polyol method. Then,the Cu NPs were dispersed in formic acid to remove the surface oxide of Cu NPs. After that,the Cu NPs were mixed with ethylene glycol to prepare solder paste with a solid content of70%. The DBC ceramic substrate and the metallized SiC die was connected by sintering at low temperature from 160 ℃ to 320 ℃for 5 min,and the assist pressure was 10 MPa. The morphology of the joint was investigated by scanning electron microscopy( SEM) and transmission electron microscopy( TEM). The result showed that the connection joints with high shearing strength and conductivity were formed by metallurgical bonding between the sintered Cu NPs layer and Cu pad. Coarse microstructure was formed inside the sintered joint.
出处 《焊接学报》 EI CAS CSCD 北大核心 2018年第6期72-76,共5页 Transactions of The China Welding Institution
基金 广州市科技计划项目支持(201509030004) 深圳市科技计划项目(JCYJ20140417172417159 JCYJ20150529152949390)
关键词 铜纳米颗粒 烧结 抗剪强度 电阻率 Cu nanoparticles sintering shear strength electrical resistivity
  • 相关文献

参考文献2

二级参考文献124

  • 1邹贵生,吴爱萍,胡乃军,白海林,王延军,任家烈,宋秀华,易汉平,宗军,史锴.Bi-Sr-Ca-Cu-O高温超导材料的连接技术[J].金属热处理,2006,31(6):1-9. 被引量:3
  • 2王春青,田艳红,孔令超.电子封装与组装无铅化应用中的问题[J].半导体行业,2006(6):46-51. 被引量:2
  • 3Gong T, Zhang Y, Liu W J, et al. Connection of macro-sized double-walled carbon nanotube strands by bandaging with doublewalled carbon nanotube films[ J ]. Carbon, 2007 (45) : 2235 - 2240.
  • 4Wu Wei, Hu Anming, Li Xiaogang, et al Vacuum brazing of carbon nanotube bundles [ J ]. Materials Letters, 2008 ( 62 ) : 4486 - 4488.
  • 5Mafune F, Kohno Junya, Takeda Y, et al. Nanoscale soldering of metal nanoparticles for construction of higher-order structures [ J ]. Journal of American Chemical Society, 2003 ( 125 ) : 1686 - 1687.
  • 6Kim S J, Jang D J. Laser-induced nanowelding of gold nanoparticles[J]. Applied Physics Letters, 2005(86): 033112- 1 - 033112 -3.
  • 7Zhang Z, Lu G Q. Pressure-assisted low-temperature sintering of silver paste as an alternative die-attach solution to solder-reflow [ J ]. IEEE Transactions on Electronic Packaging Manufacturing, 2002, 25(4): 279-283.
  • 8Bai J G, Zhang Z, Calata J N, et al. Low-temperature sintered nanoscale silver as a novel semiconductor device metallized substrate interconnect material [ J ]. IEEE Transactions on Components and Packaging Technologies, 2006, 29 (3) : 589 -593.
  • 9Bai J G, Lei T G, Calata J N, et al. Control of nano-silver sintering attained through organic binder burnout [ J ]. Journal of Materials Research, 2007, 22(12) : 3494 -3500.
  • 10Ide E, Angata S, Hirose A, et al Metal-metal bonding process using Ag metallo-organic nanoparticles [ J ]. Acta Materialia, 2005, 53 (8) : 2385 - 2393.

共引文献59

同被引文献53

引证文献7

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部