期刊文献+

基于变种概率图模型的文本生成算法

Text generation algorithm based on variant probability graph model
下载PDF
导出
摘要 针对文本自动生成问题中通过抽象摘要生成文本的需求特点,提出了一种多层概率图模型用于文本生成。通过多层次摘要等方法使得其能从更高层次理解语义需求,逐层传播信度进行文本生成,并通过线性规划进行不同层间连接权值的训练。对其进行了系统实现后的实验结果表明,所建立的计算模型实现了根据关键词生成文章的目标,效果上显著优于基于seq2seq的文本生成模型,可以用于"概念-文本"生成的实际应用场景。最后,对该模型进一步改进和与现有其他机器学习模型融合的方法进行了展望。 Aiming at the demand characteristics of text generated by abstract abstract in automatic text generation problem, a multi-layer probability graph model for text generation was presented. By means of muhi-level summarization, the semantic requirement could be understood from a higher level, and the text was generated by propagatiing trust degree layer by layer. The weights of different layers were trained by the linear programming. The experimental results of the system show that the computational model achieves the goal of generating the article according to the key words, which is significantly better than that of the text generation model based on seq2seq. So the model can be used for the actual scenario of concept-text generation. Finally, the further improvement of the model and the fusion with other machine learning models were prospected.
作者 刘廷镇 张华 LIU Tingzhen;ZHANG Hua(Senior School attached to Bohai University,Jinzhou Liaoning 121000,China;Maritime College,Bohai University,Jinzhou Liaoning 121013,China)
出处 《计算机应用》 CSCD 北大核心 2018年第A01期99-103,共5页 journal of Computer Applications
关键词 语义结构 语言模型 自然语言生成 机器学习 概率图模型 semantic structure language model Nattrral Language Generation (NLG) machine learning probabilistic graph model
  • 相关文献

参考文献5

二级参考文献50

共引文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部