期刊文献+

基于三支决策的形式概念分析、粗糙集与粒计算 被引量:19

Formal concept analysis, rough set analysis and granular computing based on three-way decisions
下载PDF
导出
摘要 三支决策是一种用“三”来思考、解决问题和处理信息的方法,即把待解决的问题分解为三个元素或者三个部分,进而再行处理。形式概念分析、粗糙集以及粒计算是当今知识发现领域中三个重要的理论。我们用三支决策的观点解释和分析形式概念分析、粗糙集以及粒计算中的基本概念、理论,并剖析它们之间的联系。 Three-way decisions are thinking, problem solving,and information processing in threes, which is a methodology of using three elements, parts, or components. From perspectives of three-way decisions, we look at three theories for knowledge discovery, namely, formal concept analysis, rough set analysis, and granular computing. We interpret basic notions and concepts in the three theories and analyze their relationships.
作者 姚一豫 祁建军 魏玲 YAO Yiyu;QI Jianjun;WEI Ling(Department of Computer Science,University of Regina,Regina,S4S 0A2,Canada;School of Computer Science & Technology,Xidian University,Xi'an 710071,China;School of Mathematics,Northwest University,Xi'an 710127,China)
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第4期477-487,共11页 Journal of Northwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(61772021,11371014)
关键词 三支决策 形式概念分析 粗糙集 粒计算 three-way decisions formal concept analysis rough sets granular computing
  • 相关文献

参考文献2

二级参考文献21

  • 1Oosthuizen G D. The Application of Concept Lattice to Machine Learning. Technical Report, University of Pretoria, South Africa, 1996.
  • 2Ho T B. Incremental conceptual clustering in the framework of Galois lattice. In: Lu H, Motoda H, Liu H, eds. KDD: Techniques and Applications. Singapore: World Scientific, 1997. 49~64.
  • 3Kent R E. Bowman C M. Digital Libraries, Conceptual Knowledge Systems and the Nebula Interface. Technical Report, University of Arkansas, 1995.
  • 4Corbett D, Burrow A L. Knowledge reuse in SEED exploiting conceptual graphs. In: International Conference on Conceptual Graphs (ICCS'96). Sydney, 1996. University of New South Wales, 1996. 56~60.
  • 5Schmitt I, Saake G. Merging Inheritance hierarchies for scheme integration based on concept lattices [EB/OL]. http: //www.mathematic.tu-darm stadt.de/ags/ag1.
  • 6Siff M, Reps T. Identifying modules via concept analysis. In: Harrold M J, Visaggio G, eds. International conference on software maintenance. Bari, Italy. Washington, DC: IEEE Computer Society, 1997. 170~179.
  • 7Ho T B. An approach to concept formation based on formal concept analysis. IEICE Trans Information and Systems, 1995, E782D (5): 553~559.
  • 8Carpineto C, Romano G. Galois: an order-theoretic approach to conceptual clustering. In: Utgoff P, ed. Proceedings of ICML 293. Amherst: Elsevier, 1993. 33~40.
  • 9Godin R. Incremental concept formation algorithm based on Galois (concept) lattices. Computational Intelligence, 1995, 11(2): 246~267.
  • 10Yao Y Y. Concept lattices in rough set theory. In: Dick S, Kurgan L, Pedrycz W, eds. Proceedings of 2004 Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS 2004), IEEE Catalog Number: 04TH8736, 2004, June 27~30. 796~801.

共引文献219

同被引文献211

引证文献19

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部