摘要
粒计算是知识表示和数据挖掘的一个基本问题。粗糙集理论是知识获取的一个典型粒计算模型。在传统粗糙集数据分析中,信息系统中每一个对象在每一个属性上只能取唯一的值。在实际生活数据中,根据不同的粒度或者尺度,对象在同一属性上可以取不同粒度的值。该文介绍目前流行的三类基于粗糙集的多粒度数据处理模型,即多粒化粗糙集模型、多粒度邻域粗糙集模型、多尺度信息系统的粗糙集数据分析模型,回顾这三类多粒度粗糙集数据分析模型的研究进展及主要研究内容,并提出若干研究问题。
Granular computing (GrC) is a basic issue in knowledge representation and data mining. Rough set theory is a typical GrC model for knowledge acquisition.In traditional rough set data analysis, each object under each attribute in an information system can only take on one value. However, in many real-life data, objects are usually measured at different scales/granularities under the same attribute.In this paper, three types of multi-granular rough-set-data-analysis models,which are called multi-granulation rough set model, multi-granular neighborhood rough set model, and multi-scale information system based rough set data analysis model, with their research progress are reviewed. And some problems are proposed for further study.
作者
吴伟志
WU Weizhi(School of Mathematics,Physics and Information Science,Zhejiang Ocean University,Zhoushan 316022,China;Key Laboratory of Oceanographic Big Data Mining & Application of Zhejiang Province,Zhoushan 316022,China)
出处
《西北大学学报(自然科学版)》
CAS
CSCD
北大核心
2018年第4期501-512,共12页
Journal of Northwest University(Natural Science Edition)
基金
国家自然科学基金资助项目(61573321
41631179)
浙江省自然科学基金资助项目(LY18F030017)
关键词
粒计算
信息系统
多粒度
邻域粗糙集
粗糙集
granular computing
information systems
multi-granularity
neighborhood rough set
rough sets