摘要
提出一种基于大气散射模型的去雾算法。基于大气散射模型,利用四细分法求取光度值;结合均方误差对比模型,构建像素信息丢失与对比度联合代价函数;优化代价函数获得最优透射估计,保留更多像素信息;增设约束条件恢复去雾图像。实验结果表明,所提算法能够保留更多像素信息,消除"黑影"现象,去雾效果良好。
Image dehazing is a hot research topic in the field of computer vision. The traditional algorithm uses contrastenhanced processing method to make image with low contrast of image dehazing clear. In order to achieve enhanced contrast,the compensation of truncation effect of pixel values often causes a lot of pixel information loss,and leads to the fog image " shadow " phenomenon,image dehazing effect is not ideal. Aiming at solving this problem,this paper proposes an image dehazing algorithm based on the atmospheric scattering model. First of all,based on the atmospheric scattering model,a method with four subdivisions is used to calculate the photometric values. Secondly,based on MSE compared model,a function for pixel information loss associated with contrast cost is built. Optimizing the cost function the optimal transmission estimation can be obtained,and more information of pixels can be kept. Finally,constraints are designed to restore dehazed image. The experimental results show that the proposed algorithm can retain more information of pixels,and eliminate the phenomenon of " shadow",and has a good effect of dehazing image.
作者
陈苏婷
史云姣
张艳艳
CHEN Suting;SHI Yunjiao;ZHANG Yanyan(Jiangsu Key Laboratory of Meteorological Observation and Information Processing;Collaborative Innovation Center of Air Environment and Equipment Technology in Jiangsu,Nanjing University of Information Science & Technology,Nanjing 210044,China)
出处
《实验室研究与探索》
CAS
北大核心
2018年第6期5-9,共5页
Research and Exploration In Laboratory
基金
国家自然科学基金项目(61705019)
江苏省高校重大自然科学基金项目(12KJA510001)
关键词
图像去雾
大气散射模型
四细分法
均方误差对比模型
联合代价函数
最优透射估计
image dehazing
atmospheric scattering model
four subdivision method
mean squared error(MSE) compared model
joint cost function
optimal transmission estimate