期刊文献+

球头铣刀多轴铣削加工的切削刃微元点轨迹模型 被引量:3

Modelling of tooth element trajectory in multi-axis ball-end milling
下载PDF
导出
摘要 切削刃微元点轨迹是描述瞬时未变形切削厚度的基础,瞬时未变形切削厚度是铣削力预测的关键.为此,针对球头铣刀多轴铣削加工过程,建立利用位置矢量来准确描述切削刃微元点的轨迹模型.首先,通过建立工件和刀具瞬时坐标系的空间变换模型来描述刀具的位置和位姿;然后,在此基础上结合球头铣刀切削刃的几何特点建立切削刃微元点的空间位置矢量,并进一步推导描述切削刃微元点轨迹的矢量形式;最后,利用C++编程语言和OpenGL图形接口实现切削刃微元点轨迹仿真,并通过对比分析仿真结果与跟踪球头铣刀1∶1三维模型上标记点的位置数据,验证了切削刃微元点轨迹模型的正确性. The tooth element trajectory is the basis to calculate the undeformed chip thickness which plays an important role in the accurate prediction of multi-axis ball-end milling.The purpose of this paper is to present a novel model describing the tooth element trajectory of ball-end cutter with its position vector in multi-axis milling.First,the transformation model between workpiece and cutter coordinate systems is given to analyze the position and posture of cutter in multi-axis milling.Then,the position vector of tooth element in cutter coordinate system is modelled based on the geometry analysis of ball-end milling cutter.The position and posture trajectories of a cutter are also analyzed in detail.Combing all above-mentioned research,the model of tooth element trajectory is given as a vector in the workpiece coordinate system.Finally,the simulation of tooth element trajectory based on the given model is implemented with the C++ programming language and OpenGL SDK.Comparisons of the simulation results and the position data of the points marked on the geometric model of a cutter show the validity of the given model in this paper.
作者 王博 黎柏春 杨建宇 于天彪 王宛山 WANG Bo;LI Baichun;YANG Jianyu;YU Tianbiao;WANG Wanshan(School of Mechanical Engineering and Automation,Northeastern University,Shenyang 110819,China)
出处 《中国工程机械学报》 北大核心 2018年第3期248-252,257,共6页 Chinese Journal of Construction Machinery
基金 国家自然科学基金青年科学基金资助项目(51505072) 中央高校基本科研业务专项资金资助项目(N160303001)
关键词 球头铣刀 多轴铣削 切削刃微元点轨迹 未变形切削厚度 铣削力 ball-end milling cutter multi-axis milling tooth element trajectory undeformed chip thickness milling forces
  • 相关文献

参考文献4

二级参考文献44

  • 1SPIEWAK S. An improved model of the chip thickness in milling [J]. Annals of the CIRP, 1995, 44(1):39-42.
  • 2MARTELLOTTI M E. An analysis of the milling process [J].Trans. ASME, 1941, 63: 677-700.
  • 3MARTELLOTTI M E. An analysis of the milling process-- part 2 down milling [J]. Trans. ASME, 1945, 67: 233-251.
  • 4MONTGOMERY D, ALTINTAS Y. Mechanism of cutting force and surface generation in dynamic milling [J].ASMEJ. Eng. Ind., 1991, 113: 160-168.
  • 5ALTINTAS Y, MONTGONERY D, BUDAK E. Dynamic peripheral milling of flexible structures [J]. ASME J. Eng. Ind., 1992, 114: 137-145.
  • 6RAO V S, RAO P V M. Modelling of tooth trajectory and process geometry in peripheral milling of curved surfaces [J]. International Journal of Machine Tools & Manufacture, 2005, 45: 617-630.
  • 7LI H Z, LIU K, LI X P. A new method for determining the undeformed chip thickness in milling [J]. Journal of Materials Processing Technology, 2001, 113: 378-384.
  • 8LOTFI S, BOUZID W, ZGHAL A. Chip thickness analysis for different tool motions for adaptive feed rate [J]. Journal of Materials Processing Technology, 2008, 204: 213-220.
  • 9ENGIN S, ALTINTAS Y. Mechanics and dynamics of general milling cutters. Part I: Helical end mills [J]. International Journal of Machine Tools & Manufacture, 2001, 41: 2195-2212.
  • 10ALTINTAS Y, LEE P. Mechanics and dynamics of ball end milling [J]. Transactions of ASME, Journal of Manufacturing Science and Engineering, 1998, 120: 684-692.

共引文献33

同被引文献28

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部