摘要
风光出力与负荷在时空分布上具有波动性和间歇性,该文按风速段拟合风电预测误差分布,采用Beta分布拟合光伏出力分布,按时段拟合负荷分布。根据风速和调度时段的不同采用卷积推广方法求解各场景下约束条件成立的分布函数。以微电网运行维护成本和环境成本最小为目标,构建微电网多目标机会约束动态调度模型。采用改进多目标教与学算法对模型进行求解。算例验证了模型与算法的有效性。然后采用蒙特卡罗模拟法产生随机场景进行调度。其结果表明,与传统机会约束调度(单场景)相比,多场景机会约束动态调度的后验置信水平更高,进一步确保了系统的安全性,提高了策略的鲁棒性。
The wind power output and load are with natures of volatility and intermittent in the temporal and spatial distribution. This paper fits wind power prediction error distribution according to wind speed segment; photovoltaic output distribution is fitted using Beta distribution; and load distribution is fitted by scheduling time. Depending on wind speed and scheduling time,the distribution function of the event is given by convolution generalization method which the constraining condition is satisfied under each scenario. The multi-target micro-grid chance constrained dynamic scheduling model is built,with the minimum of micro-grid operation and maintenance costs and environmental costs. Then,the solutions of the kinds of controllable resources closed to globally optimal solution are obtained by improved multi-objective modified teaching-learning algorithm. What's more,the simulation results verify the effectiveness of the model and algorithm. Monte Carlo simulation method is found that the posterior confidence level of the multi-scenario chance constrained scheduling is higher,and it further ensures the security of the system and improves the robustness of the strategy.
作者
汤泽琦
吕智林
Tang Zeqi;Lv Zhilin(College of Electrical Engineering,Guangxi University,Nanning 530004,Chin)
出处
《电测与仪表》
北大核心
2018年第12期66-73,共8页
Electrical Measurement & Instrumentation
基金
国家自然科学基金资助项目(61364027)
关键词
多目标教与学算法
灰熵关联度
多场景
micro-grid
chance constrained scheduling
multi-objective modified teaching-learning algorithm
grey entropy relation
multi-scenario